Mathematical and Computational Oncology : Second International Symposium, ISMCO 2020, San Diego, CA, USA, October 8-10, 2020, Proceedings (Lecture Notes in Bioinformatics)

個数:

Mathematical and Computational Oncology : Second International Symposium, ISMCO 2020, San Diego, CA, USA, October 8-10, 2020, Proceedings (Lecture Notes in Bioinformatics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 119 p.
  • 商品コード 9783030645106

Full Description

This book constitutes the refereed proceedings of the Second International Symposium on Mathematical and Computational Oncology, ISMCO 2020, which was supposed to be held in San Diego, CA, USA, in October 2020, but was instead held virtually due to the COVID-19 pandemic.The 6 full papers and 4 short papers presented together with 1 invited talk were carefully reviewed and selected from 28 submissions. The papers are organized in topical sections named: statistical and machine learning methods for cancer research; mathematical modeling for cancer research; general cancer computational biology; and posters.

Contents

Invited.- Plasticity in cancer cell populations: biology, mathematics and philosophy of cancer.- Statistical and Machine Learning Methods for Cancer Research.- CHIMERA: Combining Mechanistic Models and Machine Learning for Personalized Chemotherapy and Surgery Sequencing in Breast Cancer.- Fine-Tuning Deep Learning Architectures for Early Detection of Oral Cancer.- Discriminative Localized Sparse Representations for Breast Cancer Screening.- Activation vs. Organization: Prognostic Implications of T and B cell Features of the PDAC Microenvironment.- On the use of neural networks with censored time-to-event data.- Mathematical Modeling for Cancer Research.- tugHall: a tool to reproduce Darwinian evolution of cancer cells for simulation-based personalized medicine.- General Cancer Computational Biology.- The potential of single cell RNA-sequencing data for the prediction of gastric cancer serum biomarkers.- Poster.- Theoretical Foundation of the Performance of Phylogeny-Based Somatic Variant Detection.- Detecting subclones from spatially resolved RNA-seq data.- Novel driver synonymous mutations in the coding regions of GCB lymphoma patients improve the transcription levels of BCL2.

最近チェックした商品