Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis : Second International Workshop, UNSURE 2020, and Third International Workshop, GRAIL 2020, Held in Conjunction with MICCAI 2020, Lima, P

個数:

Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis : Second International Workshop, UNSURE 2020, and Third International Workshop, GRAIL 2020, Held in Conjunction with MICCAI 2020, Lima, P

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 222 p.
  • 言語 ENG
  • 商品コード 9783030603649

Full Description

This book constitutes the refereed proceedings of the Second International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2020, and the Third International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshops were held virtually due to the COVID-19 pandemic.For UNSURE 2020, 10 papers from 18 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world.

GRAIL 2020 accepted 10 papers from the 12 submissions received. The workshop aims to bring together scientists that use and develop graph-based models for the analysis of biomedical images and to encourage the exploration of graph-based models for difficult clinical problems within a variety of biomedical imaging contexts.

Contents

UNSURE 2020.- Image registration via stochastic gradient Markov chain Monte Carlo.- RevPHiSeg: A Memory-Efficient Neural Network for Uncertainty Quantification.- Hierarchical brain parcellation with uncertainty.- Quantitative Comparison of Monte-Carlo Dropout Uncertainty Measures for Multi-Class Segmentation.- Uncertainty Estimation in Landmark Localization based on Gaussian Heatmaps.- Weight averaging impact on the uncertainty of retinal artery-venous segmentation.- Improving Pathological Distribution Measurements with Bayesian Uncertainty.- Improving Reliability of Clinical Models using Prediction Calibration.- Uncertainty Estimation in Medical Image Denoising with Bayesian Deep Image Prior.- Uncertainty Estimation for Assessment of 3D US Scan Adequacy and DDH Metric Reliability.- GRAIL 2020.- Clustering-based Deep Brain MultiGraph Integrator Network for Learning Connectional Brain Templates.- Detection of Discriminative Neurological Circuits Using Hierarchical GraphConvolutional Networks in fMRI Sequences.- Graph Matching Based Connectomic Biomarker with Learning for Brain Disorders.- Multi-Scale Profiling of Brain Multigraphs by Eigen-based Cross-Diffusion and Heat Tracing for Brain State Proling.- Graph Domain Adaptation for Alignment-Invariant Brain Surface Segmentation.- Min-cut Max-flow for Network Abnormality Detection: Application to Preterm Birth.- Geometric Deep Learning for Post-Menstrual Age Prediction based on the Neonatal White Matter Cortical Surface.- The GraphNet Zoo: An All-in-One Graph Based Deep Semi-Supervised Framework for Medical Image Classification.- Intraoperative Liver Surface Completion with Graph Convolutional VAE.- HACT-Net: A Hierarchical Cell-to-Tissue Graph Neural Network for Histopathological Image Classification.

最近チェックした商品