Adversary-Aware Learning Techniques and Trends in Cybersecurity

個数:

Adversary-Aware Learning Techniques and Trends in Cybersecurity

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 227 p.
  • 商品コード 9783030556945

Full Description

This book is intended to give researchers and practitioners in the cross-cutting fields of artificial intelligence, machine learning (AI/ML) and cyber security up-to-date and in-depth knowledge of recent techniques for improving the vulnerabilities of AI/ML systems against attacks from malicious adversaries. The ten chapters in this book, written by eminent researchers in AI/ML and cyber-security, span diverse, yet inter-related topics including game playing AI and game theory as defenses against attacks on AI/ML systems, methods for effectively addressing vulnerabilities of AI/ML operating in large, distributed environments like Internet of Things (IoT) with diverse data modalities, and, techniques to enable AI/ML systems to intelligently interact with humans that could be malicious adversaries and/or benign teammates. Readers of this book will be equipped with definitive information on recent developments suitable for countering adversarial threats in AI/ML systems towards making them operate in a safe, reliable and seamless manner.

Contents

Part I: Game-Playing AI and Game Theory-based Techniques for Cyber Defenses.- 1. Rethinking Intelligent Behavior as Competitive Games for Handling Adversarial Challenges to Machine Learning.- 2. Security of Distributed Machine Learning:A Game-Theoretic Approach to Design Secure DSVM.- 3. Be Careful When Learning Against Adversaries: Imitative Attacker Deception in Stackelberg Security Games.- Part II: Data Modalities and Distributed Architectures for Countering Adversarial Cyber Attacks.- 4. Adversarial Machine Learning in Text: A Case Study of Phishing Email Detection with RCNN model.- 5. Overview of GANs for Image Synthesis and Detection Methods.- 6. Robust Machine Learning using Diversity and Blockchain.- Part III: Human Machine Interactions and Roles in Automated Cyber Defenses.- 7. Automating the Investigation of Sophisticated Cyber Threats with Cognitive Agents.- 8. Integrating Human Reasoning and Machine Learning to Classify Cyber Attacks.- 9. Homology as an Adversarial Attack Indicator.- Cyber-(in)security, revisited: Proactive Cyber-defenses, Interdependence and Autonomous Human Machine Teams (A-HMTs).

最近チェックした商品