Bias and Social Aspects in Search and Recommendation : First International Workshop, BIAS 2020, Lisbon, Portugal, April 14, Proceedings (Communications in Computer and Information Science)

個数:

Bias and Social Aspects in Search and Recommendation : First International Workshop, BIAS 2020, Lisbon, Portugal, April 14, Proceedings (Communications in Computer and Information Science)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 205 p.
  • 商品コード 9783030524845

Full Description

This book constitutes refereed proceedings of the First International Workshop on Algorithmic Bias in Search and Recommendation, BIAS 2020, held in April, 2020. Due to the COVID-19 pandemic BIAS 2020 was held virtually. 
The 10 full papers and 7 short papers were carefully reviewed and seleced from 44 submissions. The papers cover topics that go from search and recommendation in online dating, education, and social media, over the impact ofgender bias in word embeddings, to tools that allow to explore bias and fairnesson the Web. 

Contents

Facets of Fairness in Search and Recommendation.- Mitigating Gender Bias in Machine Learning Data Sets.- Why Do We Need To Be Bots? What Prevents Society From Detecting Biases in Recommendation Systems.- Effect of Debiasing on Information Retrieval.- Matchmaking Under Fairness Constraints: a Speed Dating Case Study.- Recommendation Filtering à la Carte for Intelligent Tutoring Systems.- Bias Goggles - Exploring the bias of Web Domains through the Eyes of the Users.- Data Pipelines for Personalized Exploration of Rated Datasets.- Beyond Accuracy in Link Prediction.- A Novel Similarity Measure for Group Recommender Systems with Optimal Time Complexity.- What Kind of Content are you Prone to Tweet? Multi-topic Preference Model for Tweeters.- Venue Suggestion Using Social-Centric Scores.- The Impact of Foursquare Checkins on Users' Emotions on Twitter.- Improving News Personalization through Search Logs.- Analyzing the Interaction of Users with News Articles to Create Personalization Services.- Using String-Comparison measures to Improve and Evaluate Collaborative Filtering Recommender Systems.- Enriching Product Catalogs with User Opinions.

最近チェックした商品