Interpretative Aspects of Quantum Mechanics : Matteo Campanella's Mathematical Studies (Unipa Springer Series)

個数:

Interpretative Aspects of Quantum Mechanics : Matteo Campanella's Mathematical Studies (Unipa Springer Series)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 143 p.
  • 言語 ENG
  • 商品コード 9783030442095

Full Description

This book presents a selection of Prof. Matteo Campanella's writings on the interpretative aspects of quantum mechanics and on a possible derivation of Born's rule - one of the key principles of the probabilistic interpretation of quantum mechanics - that is independent of any priori probabilistic interpretation. This topic is of fundamental interest, and as such is currently an active area of research. Starting from a natural method of defining such a state, Campanella found that it can be characterized through a partial density operator, which occurs as a consequence of the formalism and of a number of reasonable assumptions connected with the notion of a state. The book demonstrates that the density operator arises as an orbit invariant that has to be interpreted as probabilistic, and that its quantitative implementation is equivalent to Born's rule. The appendices present various mathematical details, which would have interrupted the continuity of the discussion if they had been included in the main text. For instance, they discuss baricentric coordinates, mapping between Hilbert spaces, tensor products between linear spaces, orbits of vectors of a linear space under the action of its structure group, and the class of Hilbert space as a category.

Contents

1 Fundamental assumptions.- 2 The state of a quantum system as a subsystem of a composite system.- 3 Relation between the state of a system as isolated and as open.- 4 Universality of the probability function.- 5 Appendix A.- 6 Appendix B.- 7 Appendix C.- 8 Appendix D.

最近チェックした商品