Reliability and Statistical Computing : Modeling, Methods and Applications (Springer Series in Reliability Engineering)

個数:

Reliability and Statistical Computing : Modeling, Methods and Applications (Springer Series in Reliability Engineering)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 317 p.
  • 言語 ENG
  • 商品コード 9783030434144

Full Description

This book presents the latest developments in both qualitative and quantitative computational methods for reliability and statistics, as well as their applications. Consisting of contributions from active researchers and experienced practitioners in the field, it fills the gap between theory and practice and explores new research challenges in reliability and statistical computing.

 The book consists of 18 chapters. It covers (1) modeling in and methods for reliability computing, with chapters dedicated to predicted reliability modeling, optimal maintenance models, and mechanical reliability and safety analysis; (2) statistical computing methods, including machine learning techniques and deep learning approaches for sentiment analysis and recommendation systems; and (3) applications and case studies, such as modeling innovation paths of European firms, aircraft components, bus safety analysis, performance prediction in textile finishing processes, and movie recommendation systems.

 Given its scope, the book will appeal to postgraduates, researchers, professors, scientists, and practitioners in a range of fields, including reliability engineering and management, maintenance engineering, quality management, statistics, computer science and engineering, mechanical engineering, business analytics, and data science.

Contents

Reliability Computing.- Modeling and Methods.- Predicted Reliability Modeling.- Mechanical Reliability Analysis.- Fatigue Distribution Functions.- Optimal Maintenance Models.- Maintenance Policies.- System Reliability with Simultaneous Failure on Consecutive Components.- Statistical Computing.- Modeling and Methods.- Wearable Sensor Data Based Human Activity Recognition Using Machine Learning.- Bootstrap Confidence Interval for Regression Coefficients.- Run Rules Control Charts for Coefficient of Variation with Measurement Errors.- Goodness-of-Fit Tests for the Component Lifetimes Distribution Based on the System Failure Data with Known Signature.- Methodology of Using Empirical Distributions to Solve Business Optimization Problems.- Deep Learning-based Scene Understanding Model for Assistive System Related to Alzheimer's Patients.- Applications and Case Studies.- Modelling the Performance of Capital Constrained Firms.- Integrating Sentiment Analysis in Recommender Systems.- Feature Matching Technique Using Similarity Features Filtering for Image Alignment.- Extended Sentence Similarity Based on Word Relations for Document Summarization.- Developing Alert Level for Aircraft Components.- Application of Machine Learning for Failure Prediction in Manufacturing Process.

最近チェックした商品