Differential Privacy for Dynamic Data (Springerbriefs in Control, Automation and Robotics)

個数:
電子版価格
¥12,367
  • 電子版あり

Differential Privacy for Dynamic Data (Springerbriefs in Control, Automation and Robotics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 110 p.
  • 言語 ENG
  • 商品コード 9783030410384

Full Description

This Springer brief provides the necessary foundations to understand differential privacy and describes practical algorithms enforcing this concept for the publication of real-time statistics based on sensitive data. Several scenarios of interest are considered, depending on the kind of estimator to be implemented and the potential availability of prior public information about the data, which can be used greatly to improve the estimators' performance. The brief encourages the proper use of large datasets based on private data obtained from individuals in the world of the Internet of Things and participatory sensing. For the benefit of the reader, several examples are discussed to illustrate the concepts and evaluate the performance of the algorithms described. These examples relate to traffic estimation, sensing in smart buildings, and syndromic surveillance to detect epidemic outbreaks.

Contents

Chapter 1. Defining Privacy Preserving Data Analysis.- Chapter 2. Basic Differentially Private Mechanism.- Chapter 3. A Two-Stage Architecture for Differentially Private Filtering.- Chapter 4. Differentially Private Filtering for Stationary Stochastic Collective Signals.- Chapter 5. Differentially Private Kalman Filtering.- Chapter 6. Differentially Private Nonlinear Observers.- Chapter 7. Conclusion.

最近チェックした商品