Continuous Semigroups of Holomorphic Self-maps of the Unit Disc (Springer Monographs in Mathematics)

個数:

Continuous Semigroups of Holomorphic Self-maps of the Unit Disc (Springer Monographs in Mathematics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 566 p.
  • 言語 ENG
  • 商品コード 9783030367848

Full Description

The book faces the interplay among dynamical properties of semigroups, analytical properties of infinitesimal generators and geometrical properties of Koenigs functions. The book includes precise descriptions of the behavior of trajectories, backward orbits, petals and boundary behavior in general, aiming to give a rather complete picture of all interesting phenomena that occur. In order to fulfill this task, we choose to introduce a new point of view, which is mainly based on the intrinsic dynamical aspects of semigroups in relation with the hyperbolic distance and a deep use of Carathéodory prime ends topology and Gromov hyperbolicity theory. This work is intended both as a reference source for researchers interested in the subject, and as an introductory book for beginners with a (undergraduate) background in real and complex analysis. For this purpose, the book is self-contained and all non-standard (and, mostly, all standard) results are provedin details.

Contents

Part I: Preliminaries.- 1 Hyperbolic geometry and interation.-  2. Holomorphic functions with non-negative real part.- 3. Univalent functions.- 4. Carathéodory's prime ends theory.- 5. Hyperbolic geometry in simply connected domains.- 6. Quasi-geodesics and localization.- 7. Harmonic measures and Bloch functions.- Part II: Semigroups.- 8 Semigroups of holomorphic functions.- 9 Models and Koenigs functions.- 10 Infinitesimal generators.- 11 Extension to the boundary.- 12 Boundary fixed points and infinitesimal generators.- 13 Fixed points, backward invariant sets and petals.- 14 Contact points.- 15 Poles of the infinitesimal generators.- 16 Rate of convergence at the Denjoy-Wolffpoint.- 17 Slopes of orbits at the Denjoy-Wolffpoint.- 18 Topological invariants