Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures : First International Workshop, UNSURE 2019, and 8th International Workshop, CLIP 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China,

個数:
電子版価格
¥9,567
  • 電子版あり

Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures : First International Workshop, UNSURE 2019, and 8th International Workshop, CLIP 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China,

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 192 p.
  • 言語 ENG
  • 商品コード 9783030326883

Full Description

This book constitutes the refereed proceedings of the First International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2019, and the 8th International Workshop on Clinical Image-Based Procedures, CLIP 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019.

For UNSURE 2019, 8 papers from 15 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world.

CLIP 2019 accepted 11 papers from the 15 submissions received. The workshops provides a forum for work centred on specific clinical applications, including techniques and procedures based on comprehensive clinical image and other data. 

Contents

UNSURE 2019: Uncertainty quantification and noise modelling.- Probabilistic Surface Reconstruction with Unknown Correspondence.- Probabilistic Image Registration via Deep Multi-class Classification: Characterizing Uncertainty.- Propagating Uncertainty Across Cascaded Medical Imaging Tasks For Improved Deep Learning Inference.- Reg R-CNN: Lesion Detection and Grading under Noisy Labels.- Fast Nonparametric Mutual Information based Registration and Uncertainty Estimation.- Quantifying Uncertainty of deep neural networks in skin lesion classification.- UNSURE 2019: Domain shift robustness.- A Generalized Approach to Determine Confident Samples for Deep Neural Networks on Unseen Data.- Out of distribution detection for intra-operative functional imaging.- CLIP 2019.- A Clinical Measuring Platform for Building the Bridge across the Quantification of Pathological N-cells in Medical Imaging for Studies of Disease.- Spatiotemporal statistical model of anatomical landmarks on a human embryonic brain.- Spaciousness filters for non-contrast CT volume segmentation of the intestine region for emergency ileus diagnosis.- Recovering physiological changes in nasal anatomy with confidence estimates.- Synthesis of Medical Images Using GANs.- DPANet: A Novel Network Based on Dense Pyramid Feature Extractor and Dual Correlation Analysis Attention Modules for Colon Glands Segmentation.- Multi-instance deep learning with graph convolutional neural networks for diagnosis of kidney diseases using ultrasound imaging.- Data Augmentation from Sketch.- An automated CNN-based 3D anatomical landmark detection method to facilitate surface-based 3D facial shape analysis.- A Device-independent Novel Statistical Modeling for Cerebral TOF-MRA data Segmentation.- Three-dimensional face reconstruction from uncalibrated photographs: application to early detection of genetic syndromes.

最近チェックした商品