Handbook of Variational Methods for Nonlinear Geometric Data (2020)

個数:

Handbook of Variational Methods for Nonlinear Geometric Data (2020)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 701 p.
  • 言語 ENG
  • 商品コード 9783030313531
  • DDC分類 004.0151

Full Description

This book covers different, current research directions in the context of variational methods for non-linear geometric data. Each chapter is authored by leading experts in the respective discipline and provides an introduction, an overview and a description of the current state of the art.

Non-linear geometric data arises in various applications in science and engineering. Examples of nonlinear data spaces are diverse and include, for instance, nonlinear spaces of matrices, spaces of curves, shapes as well as manifolds of probability measures. Applications can be found in biology, medicine, product engineering, geography and computer vision for instance.

Variational methods on the other hand have evolved to being amongst the most powerful tools for applied mathematics. They involve techniques from various branches of mathematics such as statistics, modeling, optimization, numerical mathematics and analysis. The vast majority of research on variational methods, however, is focused on data in linear spaces. Variational methods for non-linear data is currently an emerging research topic. 

As a result, and since such methods involve various branches of mathematics, there is a plethora of different, recent approaches dealing with different aspects of variational methods for nonlinear geometric data. Research results are rather scattered and appear in journals of different mathematical communities.

The main purpose of the book is to account for that by providing, for the first time, a comprehensive collection of different research directions and existing approaches in this context. It is organized in a way that leading researchers from the different fields provide an introductory overview of recent research directions in their respective discipline. As such, the book is a unique reference work for both newcomers in the field of variational methods for non-linear geometric data, as well as for established experts that aim at to exploit new research directions or collaborations.

Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com.

Contents

1. Geometric Finite Elements.- 2. Non-smooth variational regularization for processing manifold-valued data.- 3. Lifting methods for manifold-valued variational problems.- 4. Geometric subdivision and multiscale transforms.- 5. Variational Methods for Discrete Geometric Functionals.- 6 Variational methods for fluid-structure interactions.- 7. Convex lifting-type methods for curvature regularization.- 8. Assignment Flows.- 9. Geometric methods on low-rank matrix and tensor manifolds.- 10. Statistical Methods Generalizing Principal Component Analysis to Non-Euclidean Spaces.- 11. Advances in Geometric Statistics for manifold dimension reduction.- 12. Deep Variational Inference.­­- 13. Shape Analysis of Functional Data.- 14. Statistical Analysis of Trajectories of Multi-Modality Data.- 15. Geometric Metrics for Topological Representations.- 16. On Geometric Invariants, Learning, and Recognition of Shapes and Forms.- 17. Sub-Riemannian Methods in Shape Analysis.- 18. First order methods for optimization on Riemannian manifolds.- 19. Recent Advances in Stochastic Riemannian Optimization.- 20. Averaging symmetric positive-definite matrices.- 21. Rolling Maps and Nonlinear Data.- 22. Manifold-valued Data in Medical Imaging Applications.- 23. The Riemannian and Affine Geometry of Facial Expression and Action Recognition.- 24. Biomedical Applications of Geometric Functional Data Analysis.

最近チェックした商品