Machine Learning and Artificial Intelligence

個数:

Machine Learning and Artificial Intelligence

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 261 p.
  • 言語 ENG
  • 商品コード 9783030266240

Full Description

This book provides comprehensive coverage of combined Artificial Intelligence (AI) and Machine Learning (ML) theory and applications. Rather than looking at the field from only a theoretical or only a practical perspective, this book unifies both perspectives to give holistic understanding. The first part introduces the concepts of AI and ML and their origin and current state. The second and third parts delve into conceptual and theoretic aspects of static and dynamic ML techniques. The forth part describes the practical applications where presented techniques can be applied. The fifth part introduces the user to some of the implementation strategies for solving real life ML problems. 

The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals. It makes minimal use of mathematics to make the topics more intuitive and accessible.

Presents a full reference to artificial intelligence and machine learning techniques - in theory and application;
Provides a guide to AI and ML with minimal use of mathematics to make the topics more intuitive and accessible;
Connects all ML and AI techniques to applications and introduces implementations.

Contents

Introduction.- Part I Introduction to AI and ML.- Essential concepts in AL and ML.- Part II Techniques for Static Machine Learning Models.- Perceptron and Neural Networks.- Decision Trees.- Advanced Decision Trees.- Support Vector Machines.- Probabilistic Models.- Deep Learning.- Part III Techniques for Dynamic Machine Learning Models.- Autoregressive and Moving Average Models.- Hidden Markov Models and Conditional Random Fields.- Recurrent Neural Networks.- Part IV Applications.- Classification Regression.- Ranking.- Clustering.- Recommendations.- Next Best Actions.- Designing ML Pipelines.- Using ML Libraries.- Azure Machine Learning Studio.- Conclusions.

最近チェックした商品