Machine Learning Paradigms : Applications of Learning and Analytics in Intelligent Systems (Learning and Analytics in Intelligent Systems) (2019)

個数:

Machine Learning Paradigms : Applications of Learning and Analytics in Intelligent Systems (Learning and Analytics in Intelligent Systems) (2019)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 548 p.
  • 言語 ENG
  • 商品コード 9783030156305
  • DDC分類 006.31

Full Description

This book is the inaugural volume in the new Springer series on Learning and Analytics in Intelligent Systems. The series aims at providing, in hard-copy and soft-copy form, books on all aspects of learning, analytics, advanced intelligent systems and related technologies. These disciplines are strongly related and mutually complementary; accordingly, the new series encourages an integrated approach to themes and topics in these disciplines, which will result in significant cross-fertilization, research advances and new knowledge creation. To maximize the dissemination of research findings, the series will publish edited books, monographs, handbooks, textbooks and conference proceedings. This book is intended for professors, researchers, scientists, engineers and students. An extensive list of references at the end of each chapter allows readers to probe further into those application areas that interest them most.

Contents

Chapter 1: Machine Learning Paradigms: Applications of Learning and Analytics in Intelligent Systems.- Chapter 2: A Comparison of Machine Learning Techniques to Predict the Risk of Heart Failure.- Chapter 3: Differential gene Expression Analysis of RNA-seq Data Using Machine Learning for Cancer Research.- Chapter 4: Machine Learning Approaches for Pap-Smear Diagnosis: An Overview.- Chapter 5: Multi-Kernel Analysis Paradigm Implementing the Learning from Loads Approach for Smart Power Systems.- Chapter 6: Conceptualizing and Measuring Energy Security: Geopolitical Dimensions, Data Availability, Quantitative and Qualitative Methods.- Chapter 7: Automated Stock Price Motion Prediction Using Technical Analysis Datasets and Machine Learning.- Chapter 8: Airport Data Analysis Using Common Statistical Methods and Knowledge-Based Techniques.- Chapter 9: A Taxonomy and Review of the Network Data Envelopment Analysis Literature.- Chapter 10: Applying Advanced Data Analytics and Machine Learning to Enhance the Safety Control of Dams.- Chapter 11: Analytics and Evolving Landscape of Machine Learning for Emergency Response.- Chapter 12: Social Media Analytics, Types and Methodology.- Chapter 13: Machine Learning Methods for Opinion Mining in Text: The Past and the Future.- Chapter 14: Ship Detection Using Machine Learning and Optical Imagery in the Maritime Environment.- Chapter 15: Video Analytics for Visual Surveillance and Applications: An Overview and Survey.- Chapter 16: Machine Learning in Alternate Testing of Integrated Circuits

最近チェックした商品