Sub-structure Coupling for Dynamic Analysis : Application to Complex Simulation-Based Problems Involving Uncertainty (Lecture Notes in Applied and Computational Mechanics) (2019)

個数:

Sub-structure Coupling for Dynamic Analysis : Application to Complex Simulation-Based Problems Involving Uncertainty (Lecture Notes in Applied and Computational Mechanics) (2019)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 227 p.
  • 言語 ENG
  • 商品コード 9783030128210
  • DDC分類 511.8

Full Description

This book combines a model reduction technique with an efficient parametrization scheme for the purpose of solving a class of complex and computationally expensive simulation-based problems involving finite element models. These problems, which have a wide range of important applications in several engineering fields, include reliability analysis, structural dynamic simulation, sensitivity analysis, reliability-based design optimization, Bayesian model validation, uncertainty quantification and propagation, etc.  The solution of this type of problems requires a large number of dynamic re-analyses. To cope with this difficulty, a model reduction technique known as substructure coupling for dynamic analysis is considered. While the use of reduced order models alleviates part of the computational effort, their repetitive generation during the simulation processes can be computational expensive due to the substantial computational overhead that arises at the substructure level. Inthis regard, an efficient finite element model parametrization scheme is considered.  When the division of the structural model is guided by such a parametrization scheme, the generation of a small number of reduced order models is sufficient to run the large number of dynamic re-analyses. Thus, a drastic reduction in computational effort is achieved without compromising the accuracy of the results. The capabilities of the developed procedures are demonstrated in a number of simulation-based problems involving uncertainty.

Contents

Model Reduction Techniques for Structural Dynamic Analyses.- Parametrization of Reduced-Order Models Based on Normal Modes.- Parametrization of Reduced-Order Models Based on Global Interface Reduction.- Reliability Analysis of Dynamical Systems.- Reliability Sensitivity Analysis of Dynamical Systems.- Reliability-Based Design Optimization.- Bayesian Finite Element Model Updating.

最近チェックした商品