応用データサイエンス:データ駆動ビジネスのための教訓<br>Applied Data Science : Lessons Learned for the Data-Driven Business

個数:

応用データサイエンス:データ駆動ビジネスのための教訓
Applied Data Science : Lessons Learned for the Data-Driven Business

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 465 p.
  • 言語 ENG
  • 商品コード 9783030118204

Full Description

This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other.  

With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors - some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are.  

The book targets professionals as well as students of data science:first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors' combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want  to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.

 

Contents

Preface.- 1 Introduction.- 2 Data Science.- 3 Data Scientists.- 4 Data products.- 5 Legal Aspects of Applied Data Science.- 6 Risks and Side Effects of Data Science and Data Technology.- 7 Organization.- 8 What is Data Science?.- 9 On Developing Data Science.- 10 The ethics of Big Data applications in the consumer sector.- 11 Statistical Modelling.- 12 Beyond ImageNet - Deep Learning in Industrial Practice.- 13 THE BEAUTY OF SMALL DATA - AN INFORMATION RETRIEVAL PERSPECTIVE.- 14 Narrative Visualization of Open Data.- 15 Security of Data Science and Data Science for Security.- 16 Online Anomaly Detection over Big Data Streams.- 17 Unsupervised Learning and Simulation for Complexity Management in Business Operations.- 18 Data Warehousing and Exploratory Analysis for Market Monitoring.- 19 Mining Person-Centric Datasets for Insight, Prediction, and Public Health Planning.- 20 Economic Measures of Forecast Accuracy for Demand Planning - A Case-Based Discussion.- 21 Large-Scale Data-DrivenFinancial Risk Assessment.- 22 Governance and IT Architecture.- 23 Image Analysis at Scale for Finding the Links between Structure and Biology.- 24 Lessons Learned from Challenging Data Science Case Studies. 

最近チェックした商品