Laser Scanning Systems in Highway and Safety Assessment : Analysis of Highway Geometry and Safety Using LiDAR (Advances in Science, Technology & Innovation) (2020)

個数:
電子版価格
¥18,037
  • 電子版あり

Laser Scanning Systems in Highway and Safety Assessment : Analysis of Highway Geometry and Safety Using LiDAR (Advances in Science, Technology & Innovation) (2020)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 157 p.
  • 言語 ENG
  • 商品コード 9783030103736
  • DDC分類 625.7

Full Description

This book aims to promote the core understanding of a proper modelling of road traffic accidents by deep learning methods using traffic information and road geometry delineated from laser scanning data. The first two chapters of the book introduce the reader to laser scanning technology with creative explanation and graphical illustrations, review and recent methods of extracting geometric road parameters. The next three chapters present different machine learning and statistical techniques applied to extract road geometry information from laser scanning data. Chapters 6 and 7 present methods for modelling roadside features and automatic road geometry identification in vector data. After that, this book goes on reviewing methods used for road traffic accident modelling including accident frequency and injury severity of the traffic accident (Chapter 8). Then, the next chapter explores the details of neural networks and their performance in predicting the traffic accidents along with a comparison with common data mining models. Chapter 10 presents a novel hybrid model combining extreme gradient boosting and deep neural networks for predicting injury severity of road traffic accidents. This chapter is followed by deep learning applications in modelling accident data using feed-forward, convolutional, recurrent neural network models (Chapter 11). The final chapter (Chapter 12) presents a procedure for modelling traffic accident with little data based on the concept of transfer learning. This book aims to help graduate students, professionals, decision makers, and road planners in developing better traffic accident prediction models using advanced neural networks.

Contents

Introduction to Laser Scanning Technology.- Road Geometric Modeling Using Laser-Scanning Data.- Optimizing support vector machine and ensemble trees using the Taguchi method for automatic road network extraction.- Road Geometric Modeling Using a Novel Hierarchical Approach.- Introduction to Neural Networks.- Traffic Accidents Predictions with Neural Networks: A Review.- Applications of Deep Learning in Severity Prediction of Traffic Accidents.- Accident Modelling Using Feedforward Neural Networks.- Accident Severity Prediction with Convolutional Neural Networks.- Injury Severity Prediction Using Recurrent Neural Networks.- Improving Traffic Accident Prediction Models with Transfer Learning.- A Comparative Study between Neural Networks, Support Vector Machine, and Logistic Regression for Accident Predictions.- Estimation of Accident Factor Importance in Neural Network Models.

最近チェックした商品