Network Data Analytics : A Hands-On Approach for Application Development (Computer Communications and Networks)

個数:

Network Data Analytics : A Hands-On Approach for Application Development (Computer Communications and Networks)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 398 p.
  • 言語 ENG
  • 商品コード 9783030085445
  • DDC分類 004

Full Description

In order to carry out data analytics, we need powerful and flexible computing software. However the software available for data analytics is often proprietary and can be expensive. This book reviews Apache tools, which are open source and easy to use. After providing an overview of the background of data analytics, covering the different types of analysis and the basics of using Hadoop as a tool, it focuses on different Hadoop ecosystem tools, like Apache Flume, Apache Spark, Apache Storm, Apache Hive, R, and Python, which can be used for different types of analysis. It then examines the different machine learning techniques that are useful for data analytics, and how to visualize data with different graphs and charts. Presenting data analytics from a practice-oriented viewpoint, the book discusses useful tools and approaches for data analytics, supported by concrete code examples. The book is a valuable reference resource for graduate students and professionals in related fields, and is also of interest to general readers with an understanding of data analytics.

Contents

Part I: Data Analytics and Hadoop.- Chapter 1. Introduction to Data Analytics.- Chapter 2. Introduction to Hadoop.- Chapter 3. Data Analytics with Map Reduce.- Part II: Tools for Data Analytics.- Chapter 4. Apache Pig.- Chapter 5. Apache Hive.- Chapter 6. Apache Spark.- Chapter 7. Apache Flume.- Chapter 8. Apache Storm.- Chapter 9. Python R.- Part III: Machine Learning for Data Analytics.- Chapter 10. Basics of Machine Learning.- Chapter 11. Linear Regression.- Chapter 12. Logistic Regression.- Chapter 13. Machine Learning on Spark.- Part IV: Exploring and Visualizing Data.- Chapter 14. Introduction to Visualization.- Chapter 15. Principles of Data Visualization.- Chapter 16. Visualization Charts.- Chapter 17. Popular Visualization Tools.- Chapter 18. Data Visualization with Hadoop.- Part V: Case Studies.- Chapter 19. Product Recommendation.- Chapter 20. Market Basket Analysis.

最近チェックした商品