確率的計算の手法と応用(テキスト)<br>Stochastic Computing: Techniques and Applications

個数:
電子版価格
¥16,266
  • 電子版あり

確率的計算の手法と応用(テキスト)
Stochastic Computing: Techniques and Applications

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 215 p.
  • 言語 ENG
  • 商品コード 9783030037291

Full Description

This book covers the history and recent developments of stochastic computing. Stochastic computing (SC) was first introduced in the 1960s for logic circuit design, but its origin can be traced back to von Neumann's work on probabilistic logic. In SC, real numbers are encoded by random binary bit streams, and information is carried on the statistics of the binary streams. SC offers advantages such as hardware simplicity and fault tolerance. Its promise in data processing has been shown in applications including neural computation, decoding of error-correcting codes, image processing, spectral transforms and reliability analysis.

There are three main parts to this book. The first part, comprising Chapters 1 and 2, provides a history of the technical developments in stochastic computing and a tutorial overview of the field for both novice and seasoned stochastic computing researchers. In the second part, comprising Chapters 3 to 8, we review both well-established and emerging design approaches for stochastic computing systems, with a focus on accuracy, correlation, sequence generation, and synthesis. The last part, comprising Chapters 9 and 10, provides insights into applications in machine learning and error-control coding.

Contents

Foreword: Gulak.- 1. Introduction to Stochastic Computing (Gaudet, Gross, Smith).- 2. Origins of Stochastic Computing (Gaines).-  3. Tutorial on Stochastic Computing (Winstead).-  4. Accuracy and Correlation in Stochastic Computing (Alaghi, Ting, Lee, Hayes).- 5. Synthesis of Polynomial Functions (Riedel, Qian).- 6. Deterministic Approaches to Bitstream Computing (Riedel).- 7. Generating Stochastic Bitstreams (Hsiao, Anderson, Hara-Azumi).- 8. RRAM Solutions for Stochastic Computing (Knag, Gaba, Lu, Zhang).- 9 Spintronic Solutions for Stochastic Computing (Jia, Wang, Huang, Zhang, Yang, Qu, et al.).-  10. Brain-inspired computing (Onizawa, Gross, Hanyu).-  11. Stochastic Decoding of Error-Correcting Codes (Leduc-Primeau, Hemati, Gaudet, Gross).

最近チェックした商品