Stochastic Modeling and Analysis of Telecoms Networks

個数:
電子版価格
¥28,139
  • 電子版あり

Stochastic Modeling and Analysis of Telecoms Networks

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 387 p.
  • 言語 ENG
  • 商品コード 9781848212381
  • DDC分類 621.38456051922

Full Description

This book addresses the stochastic modeling of telecommunication networks, introducing the main mathematical tools for that purpose, such as Markov processes, real and spatial point processes and stochastic recursions, and presenting a wide list of results on stability, performances and comparison of systems.
The authors propose a comprehensive mathematical construction of the foundations of stochastic network theory: Markov chains, continuous time Markov chains are extensively studied using an original martingale-based approach. A complete presentation of stochastic recursions from an ergodic theoretical perspective is also provided, as well as spatial point processes.
Using these basic tools, stability criteria, performance measures and comparison principles are obtained for a wide class of models, from the canonical M/M/1 and G/G/1 queues to more sophisticated systems, including the current "hot topics" of spatial radio networking, OFDMA and real-time networks.

Contents

1. Introduction.
Part 1: Discrete-time Modeling
2. Stochastic Recursive Sequences.
3. Markov Chains.
4. Stationary Queues.
5. The M/GI/1 Queue.
Part 2: Continuous-time Modeling
6. Poisson Process.
7. Markov Process.
8. Systems with Delay.
9. Loss Systems.
Part 3: Spatial Modeling
10. Spatial Point Processes.

Contents

Preface ix

Chapter 1. Introduction 1

1.1. Traffic, load, Erlang, etc1

1.2. Notations and nomenclature 7

1.3. Lindley and Bene¡s 10

1.4. Notes and comments 18

PART 1: DISCRETE-TIME MODELING 21

Chapter 2. Stochastic Recursive Sequences 23

2.1. Canonical space 24

2.2. Loynes's scheme 30

2.3. Coupling 34

2.4. Comparison of stochastic recursive sequences 40

2.5. Notes and comments 43

Chapter 3. Markov Chains 45

3.1. Definition and examples 45

3.2. Strong Markov property 49

3.3. Classification of states 52

3.4. Invariant measures and invariant probability 60

3.5. Effective calculation of the invariant probability 75

3.6. Problems 77

3.7. Notes and comments 80

Chapter 4. Stationary Queues 83

4.1. Single server queues 84

4.2. Processor sharing queue 104

4.3. Parallel queues 106

4.4. The queue with S servers 117

4.5. Infinite servers queue 124

4.6. Queues with impatient customers 127

4.7. Notes and comments 146

Chapter 5. The M/GI/1 Queue 149

5.1. The number of customers in the queue 149

5.2. Pollacek-Khinchin formulas 153

5.3. Sojourn time 156

5.4. Tail distribution of the waiting time 158

5.5. Busy periods 160

PART 2: CONTINUOUS-TIME MODELING 167

Chapter 6. Poisson Process 169

6.1. Definitions 170

6.2. Properties 176

6.3. Discrete analog: the Bernoulli process 181

6.4. Simulation of the Poisson process 183

6.5. Non-homogeneous Poisson process 185

6.6. Cox processes 189

6.7. Problems 189

6.8. Notes and comments 191

Chapter 7. Markov Process 193

7.1. Preliminaries 193

7.2. Pathwise construction 195

7.3. Markovian semi-group and infinitesimal generator 199

7.4. Martingale problem 215

7.5. Reversibility and applications 220

7.6. Markov Modulated Poisson Processes 226

7.7. Problems 232

7.8. Notes and comments 234

Chapter 8. Systems with Delay 237

8.1. Little's formula 237

8.2. Single server queue 241

8.3. Multiple server queue 245

8.4. Processor sharing queue 252

8.5. The M/M/∞ queue 253

8.6. The departure process 254

8.7. Queuing networks 255

8.8. Problems 265

8.9. Notes and comments 268

Chapter 9. Loss Systems 271

9.1. General 271

9.2. Erlang model 274

9.3. The M/M/1/1 + C queue 276

9.4. The "trunk" effect 279

9.5. Engset model 280

9.6. IPP/M/S/S queue 281

9.7. Generalized Erlang models 285

9.8. Hierarchical networks 289

9.9. A model with balking 294

9.10. A call center with impatient customers 301

9.11. Problems 303

9.12. Notes and comments 304

PART 3: SPATIAL MODELING 307

Chapter 10. Spatial Point Processes 309

10.1. Preliminary 309

10.2. Stochastic geometry 310

10.3. Poisson process 311

10.4. Stochastic analysis 326

10.5. Problems 336

10.6. Notes and comments 337

Appendix A. Mathematical Toolbox 339

A.1. Probability spaces and processes 339

A.2. Conditional expectation 347

A.3. Vector spaces and orders 352

A.4. Bounded variation processes 356

A.5. Martingales 363

A.6. Laplace transform 378

A.7. Notes and comments 379

Bibliography 381

Index 385

最近チェックした商品