Applications of Artificial Intelligence in E-Healthcare Systems (Healthcare Technologies)

個数:

Applications of Artificial Intelligence in E-Healthcare Systems (Healthcare Technologies)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 306 p.
  • 言語 ENG
  • 商品コード 9781839534492
  • DDC分類 610.28563

Full Description

Increased use of artificial intelligence (AI) is being deployed in many hospitals and healthcare settings to help improve health care service delivery. Machine learning (ML) and deep learning (DL) tools can help guide physicians with tasks such as diagnosis and detection of diseases and assisting with medical decision making.

This edited book outlines novel applications of AI in e-healthcare. It includes various real-time/offline applications and case studies in the field of e-Healthcare, such as image recognition tools for assisting with tuberculosis diagnosis from x-ray data, ML tools for cancer disease prediction, and visualisation techniques for predicting the outbreak and spread of Covid-19.

Heterogenous recurrent convolution neural networks for risk prediction in electronic healthcare record datasets are also reviewed.

Suitable for an audience of computer scientists and healthcare engineers, the main objective of this book is to demonstrate effective use of AI in healthcare by describing and promoting innovative case studies and finding the scope for improvement across healthcare services.

Contents

Chapter 1: Introduction to AI in E-healthcare
Chapter 2: The scope and future outlook of artificial intelligence in healthcare systems
Chapter 3: Class dependency-based learning using Bi-LSTM coupled with the transfer learning of VGG16 for the diagnosis of tuberculosis from chest X-rays
Chapter 4: Drug discovery clinical trial exploratory process and bioactivity analysis optimizer using deep convolutional neural network for E-prosperity
Chapter 5: An automated NLP methodology to predict ICU mortality CLINICAL dataset using multiclass grouping with LSTM RNN approach
Chapter 6: Applying machine learning techniques to build a hybrid machine learning model for cancer prediction
Chapter 7: AI in healthcare: challenges and opportunities
Chapter 8: Impression of artificial intelligence in e-healthcare medical applications
Chapter 9: Heterogeneous recurrent convolution neural network for risk prediction in the EHR dataset
Chapter 10: A narrative review and impacts on trust for data in the healthcare industry using artificial intelligence
Chapter 11: Analysis of COVID-19 outbreak using data visualization techniques: a review
Chapter 12: Artificial intelligence-based electronic health records for healthcare
Chapter 13: Automatic structuring on Chinese ultrasound report of Covid-19 diseases via natural language processing

最近チェックした商品