Deep Reinforcement Learning with Python : Master classic RL, deep RL, distributional RL, inverse RL, and more with OpenAI Gym and TensorFlow, 2nd Edition (2ND)

個数:

Deep Reinforcement Learning with Python : Master classic RL, deep RL, distributional RL, inverse RL, and more with OpenAI Gym and TensorFlow, 2nd Edition (2ND)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 760 p.
  • 言語 ENG
  • 商品コード 9781839210686
  • DDC分類 006.31

Full Description

An example-rich guide for beginners to start their reinforcement and deep reinforcement learning journey with state-of-the-art distinct algorithms

Key Features

Covers a vast spectrum of basic-to-advanced RL algorithms with mathematical explanations of each algorithm
Learn how to implement algorithms with code by following examples with line-by-line explanations
Explore the latest RL methodologies such as DDPG, PPO, and the use of expert demonstrations

Book DescriptionWith significant enhancements in the quality and quantity of algorithms in recent years, this second edition of Hands-On Reinforcement Learning with Python has been revamped into an example-rich guide to learning state-of-the-art reinforcement learning (RL) and deep RL algorithms with TensorFlow 2 and the OpenAI Gym toolkit.

In addition to exploring RL basics and foundational concepts such as Bellman equation, Markov decision processes, and dynamic programming algorithms, this second edition dives deep into the full spectrum of value-based, policy-based, and actor-critic RL methods. It explores state-of-the-art algorithms such as DQN, TRPO, PPO and ACKTR, DDPG, TD3, and SAC in depth, demystifying the underlying math and demonstrating implementations through simple code examples.

The book has several new chapters dedicated to new RL techniques, including distributional RL, imitation learning, inverse RL, and meta RL. You will learn to leverage stable baselines, an improvement of OpenAI's baseline library, to effortlessly implement popular RL algorithms. The book concludes with an overview of promising approaches such as meta-learning and imagination augmented agents in research.

By the end, you will become skilled in effectively employing RL and deep RL in your real-world projects.

What you will learn

Understand core RL concepts including the methodologies, math, and code
Train an agent to solve Blackjack, FrozenLake, and many other problems using OpenAI Gym
Train an agent to play Ms Pac-Man using a Deep Q Network
Learn policy-based, value-based, and actor-critic methods
Master the math behind DDPG, TD3, TRPO, PPO, and many others
Explore new avenues such as the distributional RL, meta RL, and inverse RL
Use Stable Baselines to train an agent to walk and play Atari games

Who this book is forIf you're a machine learning developer with little or no experience with neural networks interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for you.

Basic familiarity with linear algebra, calculus, and the Python programming language is required. Some experience with TensorFlow would be a plus.

Contents

Table of Contents

Fundamentals of Reinforcement Learning
A Guide to the Gym Toolkit
The Bellman Equation and Dynamic Programming
Monte Carlo Methods
Understanding Temporal Difference Learning
Case Study - The MAB Problem
Deep Learning Foundations
A Primer on TensorFlow
Deep Q Network and Its Variants
Policy Gradient Method
Actor-Critic Methods - A2C and A3C
Learning DDPG, TD3, and SAC
TRPO, PPO, and ACKTR Methods
Distributional Reinforcement Learning
Imitation Learning and Inverse RL
Deep Reinforcement Learning with Stable Baselines
Reinforcement Learning Frontiers
Appendix 1 - Reinforcement Learning Algorithms
Appendix 2 - Assessments

最近チェックした商品