Hands-On Financial Trading with Python : A practical guide to using Zipline and other Python libraries for backtesting trading strategies

個数:

Hands-On Financial Trading with Python : A practical guide to using Zipline and other Python libraries for backtesting trading strategies

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 360 p.
  • 言語 ENG
  • 商品コード 9781838982881
  • DDC分類 332.6320285

Full Description

Build and backtest your algorithmic trading strategies to gain a true advantage in the market

Key Features

Get quality insights from market data, stock analysis, and create your own data visualisations
Learn how to navigate the different features in Python's data analysis libraries
Start systematically approaching quantitative research and strategy generation/backtesting in algorithmic trading

Book DescriptionCreating an effective system to automate your trading can help you achieve two of every trader's key goals; saving time and making money. But to devise a system that will work for you, you need guidance to show you the ropes around building a system and monitoring its performance. This is where Hands-on Financial Trading with Python can give you the advantage.

This practical Python book will introduce you to Python and tell you exactly why it's the best platform for developing trading strategies. You'll then cover quantitative analysis using Python, and learn how to build algorithmic trading strategies with Zipline using various market data sources.

Using Zipline as the backtesting library allows access to complimentary US historical daily market data until 2018. As you advance, you will gain an in-depth understanding of Python libraries such as NumPy and pandas for analyzing financial datasets, and explore Matplotlib, statsmodels, and scikit-learn libraries for advanced analytics.

As you progress, you'll pick up lots of skills like time series forecasting, covering pmdarima and Facebook Prophet.

By the end of this trading book, you will be able to build predictive trading signals, adopt basic and advanced algorithmic trading strategies, and perform portfolio optimization to help you get —and stay—ahead of the markets.

What you will learn

Discover how quantitative analysis works by covering financial statistics and ARIMA
Use core Python libraries to perform quantitative research and strategy development using real datasets
Understand how to access financial and economic data in Python
Implement effective data visualization with Matplotlib
Apply scientific computing and data visualization with popular Python libraries
Build and deploy backtesting algorithmic trading strategies

Who this book is forIf you're a financial trader or a data analyst who wants a hands-on introduction to designing algorithmic trading strategies, then this book is for you. You don't have to be a fully-fledged programmer to dive into this book, but knowing how to use Python's core libraries and a solid grasp on statistics will help you get the most out of this book.

Contents

Table of Contents

Introduction to algorithmic trading
Exploratory Data Analysis in Python
High-speed Scientific Computing using NumPy
Data Manipulation and Analysis with Pandas
Data Visualization using Matplotlib
Statistical Estimation, Inference, and Prediction
Financial Market Data Access in Python
Introduction to Zipline and PyFolio
Fundamental algorithmic trading strategies

最近チェックした商品