Deep Learning and XAI Techniques for Anomaly Detection : Integrate the theory and practice of deep anomaly explainability

個数:

Deep Learning and XAI Techniques for Anomaly Detection : Integrate the theory and practice of deep anomaly explainability

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 218 p.
  • 言語 ENG
  • 商品コード 9781804617755
  • DDC分類 006.31

Full Description

Create interpretable AI models for transparent and explainable anomaly detection with this hands-on guide

Purchase of the print or Kindle book includes a free PDF eBook

Key Features

Build auditable XAI models for replicability and regulatory compliance
Derive critical insights from transparent anomaly detection models
Strike the right balance between model accuracy and interpretability

Book DescriptionDespite promising advances, the opaque nature of deep learning models makes it difficult to interpret them, which is a drawback in terms of their practical deployment and regulatory compliance.

Deep Learning and XAI Techniques for Anomaly Detection shows you state-of-the-art methods that'll help you to understand and address these challenges. By leveraging the Explainable AI (XAI) and deep learning techniques described in this book, you'll discover how to successfully extract business-critical insights while ensuring fair and ethical analysis.

This practical guide will provide you with tools and best practices to achieve transparency and interpretability with deep learning models, ultimately establishing trust in your anomaly detection applications. Throughout the chapters, you'll get equipped with XAI and anomaly detection knowledge that'll enable you to embark on a series of real-world projects. Whether you are building computer vision, natural language processing, or time series models, you'll learn how to quantify and assess their explainability.

By the end of this deep learning book, you'll be able to build a variety of deep learning XAI models and perform validation to assess their explainability.

What you will learn

Explore deep learning frameworks for anomaly detection
Mitigate bias to ensure unbiased and ethical analysis
Increase your privacy and regulatory compliance awareness
Build deep learning anomaly detectors in several domains
Compare intrinsic and post hoc explainability methods
Examine backpropagation and perturbation methods
Conduct model-agnostic and model-specific explainability techniques
Evaluate the explainability of your deep learning models

Who this book is forThis book is for anyone who aspires to explore explainable deep learning anomaly detection, tenured data scientists or ML practitioners looking for Explainable AI (XAI) best practices, or business leaders looking to make decisions on trade-off between performance and interpretability of anomaly detection applications. A basic understanding of deep learning and anomaly detection-related topics using Python is recommended to get the most out of this book.

Contents

Table of Contents

Understanding Deep Learning Anomaly Detection
Understanding Explainable AI
Natural Language Processing Anomaly Explainability
Time Series Anomaly Explainability
Computer Vision Anomaly Explainability
Differentiating Intrinsic versus Post Hoc Explainability
Backpropagation Versus Perturbation Explainability
Model-Agnostic versus Model-Specific Explainability
Explainability Evaluation Schemes

最近チェックした商品