Instant Insights: Advances in Detecting and Forecasting Crop Pests and Diseases (Burleigh Dodds Science: Instant Insights)

個数:
  • ポイントキャンペーン

Instant Insights: Advances in Detecting and Forecasting Crop Pests and Diseases (Burleigh Dodds Science: Instant Insights)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 232 p.
  • 言語 ENG
  • 商品コード 9781801465069
  • DDC分類 632.6

Full Description

This collection features six peer-reviewed reviews on advances and in detecting and forecasting crop pests and diseases.

The first chapter introduces the concept of machine learning to identify and diagnose crop diseases, focussing on the deep learning concept.

The second chapter discusses recent advances in crop disease forecasting models, focussing on the application of precision agriculture technologies and Earth observation satellites to identify areas at risk of possible disease outbreaks.

The third chapter explores the contribution of remote sensing in improving the ways in which plant health is monitored in response to exposure to biotic stresses, such as disease.

The fourth chapter reviews how sensor technologies in combination with informatics and modern application technologies can contribute to more effective pest control.

The fifth chapter assesses the role of decision support systems for pest monitoring and management through information technology, such as spectral indices and image-based diagnostics.

The final chapter addresses key issues and challenges in pest monitoring and forecasting models, such as the limitation of some traps in attracting insects through the use of sex pheromones.

Contents

Chapter 1 - Using machine learning to identify and diagnose crop diseases: Megan Long, John Innes Centre, UK; 1 Introduction2 A quick introduction to deep learning3 Preparation of data for deep learning experiments4 Crop disease classification5 Different visualisation techniques6 Hyperspectral imaging for early disease detection7 Case study: Identification and classification of diseases on wheat8 Conclusion and future trends9 Where to look for more information10 References
Chapter 2 - Advances in crop disease forecasting models: Nathaniel Newlands, Summerland Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Canada; 1 Introduction2 Modeling complex, crop-disease-environment dynamics3 Big data assimilation to improve forecast quality4 Novel artificial intelligence (AI)-based methodologies5 Case study: operational, crop disease early-warning systems6 Conclusion and future trends7 Where to look for further information8 References
Chapter 3 - Advances in remote/aerial sensing technologies to assess crop health: Michael Schirmann, Leibniz Institute of Agricultural Engineering, Germany; 1 Introduction2 Remote sensing of crop health3 Remote sensing of crop diseases4 Case study: detecting stripe rust using very high-resolution imaging5 Conclusion and future trends6 Where to look for further information7 References
Chapter 4 - Precision crop protection systems: E. C. Oerke, University of Bonn, Germany; 1 Introduction2 Variability of pest incidence and pest management strategies3 Sensor use for disease management4 Sensor use for the management of invertebrate pests5 Perspectives6 References
Chapter 5 - Decision-support systems for pest monitoring and management: B. Sailaja, Ch. Padmavathi, D. Krishnaveni, G. Katti, D. Subrahmanyam, M. S. Prasad, S. Gayatri and S. R. Voleti, ICAR-Indian Institute of Rice Research, India; 1 Introduction2 Pest identification3 Pest monitoring4 Pest forecasting5 Integrated pest management (IPM)6 Case studies7 Summary and future trends8 Where to look for further information9 References
Chapter 6 - Advances in insect pest and disease monitoring and forecasting in horticulture: Irene Vänninen, Natural Resources Institute Finland (LUKE), Finland; 1 Introduction2 Addressing key issues and challenges of pest monitoring and forecasting3 Case study: whitefly sampling, monitoring and forecasting
4 Conclusion5 Future trends in research6 Where to look for further information7 References

最近チェックした商品