Getting Started with Streamlit for Data Science : Create and deploy Streamlit web applications from scratch in Python

個数:

Getting Started with Streamlit for Data Science : Create and deploy Streamlit web applications from scratch in Python

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 282 p.
  • 言語 ENG
  • 商品コード 9781800565500
  • DDC分類 005.3

Full Description

Create, deploy, and test your Python applications, analyses, and models with ease using Streamlit

Key Features

Learn how to showcase machine learning models in a Streamlit application effectively and efficiently
Become an expert Streamlit creator by getting hands-on with complex application creation
Discover how Streamlit enables you to create and deploy apps effortlessly

Book DescriptionStreamlit shortens the development time for the creation of data-focused web applications, allowing data scientists to create web app prototypes using Python in hours instead of days. Getting Started with Streamlit for Data Science takes a hands-on approach to helping you learn the tips and tricks that will have you up and running with Streamlit in no time.
You'll start with the fundamentals of Streamlit by creating a basic app and gradually build on the foundation by producing high-quality graphics with data visualization and testing machine learning models. As you advance through the chapters, you'll walk through practical examples of both personal data projects and work-related data-focused web applications, and get to grips with more challenging topics such as using Streamlit Components, beautifying your apps, and quick deployment of your new apps.
By the end of this book, you'll be able to create dynamic web apps in Streamlit quickly and effortlessly using the power of Python.What you will learn

Set up your first development environment and create a basic Streamlit app from scratch
Explore methods for uploading, downloading, and manipulating data in Streamlit apps
Create dynamic visualizations in Streamlit using built-in and imported Python libraries
Discover strategies for creating and deploying machine learning models in Streamlit
Use Streamlit sharing for one-click deployment
Beautify Streamlit apps using themes, Streamlit Components, and Streamlit sidebar
Implement best practices for prototyping your data science work with Streamlit

Who this book is forThis book is for data scientists and machine learning enthusiasts who want to create web apps using Streamlit. Whether you're a junior data scientist looking to deploy your first machine learning project in Python to improve your resume or a senior data scientist who wants to use Streamlit to make convincing and dynamic data analyses, this book will help you get there! Prior knowledge of Python programming will assist with understanding the concepts covered.

Contents

Table of Contents

An Introduction to Streamlit
Uploading, Downloading, and Manipulating Data
Data Visualization
Using Machine Learning with Streamlit
Deploying Streamlit with Streamlit Sharing
Beautifying Streamlit Apps
Exploring Streamlit Components
Deploying Streamlit Apps with Heroku and AWS
Improving Job Applications With Streamlit
The Data Project - Prototyping Projects in Streamlit
Using Streamlit for Teams
Streamlit Power Users

最近チェックした商品