The Unsupervised Learning Workshop : Get started with unsupervised learning algorithms and simplify your unorganized data to help make future predictions

個数:

The Unsupervised Learning Workshop : Get started with unsupervised learning algorithms and simplify your unorganized data to help make future predictions

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 550 p.
  • 言語 ENG
  • 商品コード 9781800200708
  • DDC分類 006.31

Full Description

Learning how to apply unsupervised algorithms on unlabeled datasets from scratch can be easier than you thought with this beginner's workshop, featuring interesting examples and activities

Key Features

Get familiar with the ecosystem of unsupervised algorithms
Learn interesting methods to simplify large amounts of unorganized data
Tackle real-world challenges, such as estimating the population density of a geographical area

Book DescriptionDo you find it difficult to understand how popular companies like WhatsApp and Amazon find valuable insights from large amounts of unorganized data? The Unsupervised Learning Workshop will give you the confidence to deal with cluttered and unlabeled datasets, using unsupervised algorithms in an easy and interactive manner.

The book starts by introducing the most popular clustering algorithms of unsupervised learning. You'll find out how hierarchical clustering differs from k-means, along with understanding how to apply DBSCAN to highly complex and noisy data. Moving ahead, you'll use autoencoders for efficient data encoding.

As you progress, you'll use t-SNE models to extract high-dimensional information into a lower dimension for better visualization, in addition to working with topic modeling for implementing natural language processing (NLP). In later chapters, you'll find key relationships between customers and businesses using Market Basket Analysis, before going on to use Hotspot Analysis for estimating the population density of an area.

By the end of this book, you'll be equipped with the skills you need to apply unsupervised algorithms on cluttered datasets to find useful patterns and insights.

What you will learn

Distinguish between hierarchical clustering and the k-means algorithm
Understand the process of finding clusters in data
Grasp interesting techniques to reduce the size of data
Use autoencoders to decode data
Extract text from a large collection of documents using topic modeling
Create a bag-of-words model using the CountVectorizer

Who this book is forIf you are a data scientist who is just getting started and want to learn how to implement machine learning algorithms to build predictive models, then this book is for you. To expedite the learning process, a solid understanding of the Python programming language is recommended, as you'll be editing classes and functions instead of creating them from scratch.

Contents

Table of Contents

Introduction to Clustering
Hierarchical Clustering
Neighborhood Approaches and DBSCAN
Dimensionality Reduction Techniques and PCA
Autoencoders
t-Distributed Stochastic Neighbor Embedding
Topic Modeling
Market Basket Analysis
Hotspot Analysis

最近チェックした商品