Python Data Science Essentials : A practitioner's guide covering essential data science principles, tools, and techniques, 3rd Edition (3RD)

個数:

Python Data Science Essentials : A practitioner's guide covering essential data science principles, tools, and techniques, 3rd Edition (3RD)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 472 p.
  • 言語 ENG
  • 商品コード 9781789537864
  • DDC分類 005.133

Full Description

Gain useful insights from your data using popular data science tools

Key Features

A one-stop guide to Python libraries such as pandas and NumPy
Comprehensive coverage of data science operations such as data cleaning and data manipulation
Choose scalable learning algorithms for your data science tasks

Book DescriptionFully expanded and upgraded, the latest edition of Python Data Science Essentials will help you succeed in data science operations using the most common Python libraries. This book offers up-to-date insight into the core of Python, including the latest versions of the Jupyter Notebook, NumPy, pandas, and scikit-learn.

The book covers detailed examples and large hybrid datasets to help you grasp essential statistical techniques for data collection, data munging and analysis, visualization, and reporting activities. You will also gain an understanding of advanced data science topics such as machine learning algorithms, distributed computing, tuning predictive models, and natural language processing. Furthermore, You'll also be introduced to deep learning and gradient boosting solutions such as XGBoost, LightGBM, and CatBoost.

By the end of the book, you will have gained a complete overview of the principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users

What you will learn

Set up your data science toolbox on Windows, Mac, and Linux
Use the core machine learning methods offered by the scikit-learn library
Manipulate, fix, and explore data to solve data science problems
Learn advanced explorative and manipulative techniques to solve data operations
Optimize your machine learning models for optimized performance
Explore and cluster graphs, taking advantage of interconnections and links in your data

Who this book is forIf you're a data science entrant, data analyst, or data engineer, this book will help you get ready to tackle real-world data science problems without wasting any time. Basic knowledge of probability/statistics and Python coding experience will assist you in understanding the concepts covered in this book.

Contents

Table of Contents

First Steps
Data Munging
The Data Pipeline
Machine Learning
Visualization, Insights, and Results
Social Network Analysis
Deep Learning Beyond the Basics
Spark for Big Data
Appendix A: Strengthen Your Python Foundations

最近チェックした商品