PyTorch Deep Learning Hands-On : Build CNNs, RNNs, GANs, reinforcement learning, and more, quickly and easily

個数:

PyTorch Deep Learning Hands-On : Build CNNs, RNNs, GANs, reinforcement learning, and more, quickly and easily

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 250 p.
  • 言語 ENG
  • 商品コード 9781788834131
  • DDC分類 006.31

Full Description

Hands-on projects cover all the key deep learning methods built step-by-step in PyTorch

Key Features

Internals and principles of PyTorch
Implement key deep learning methods in PyTorch: CNNs, GANs, RNNs, reinforcement learning, and more
Build deep learning workflows and take deep learning models from prototyping to production

Book DescriptionPyTorch Deep Learning Hands-On is a book for engineers who want a fast-paced guide to doing deep learning work with Pytorch. It is not an academic textbook and does not try to teach deep learning principles. The book will help you most if you want to get your hands dirty and put PyTorch to work quickly.

PyTorch Deep Learning Hands-On shows how to implement the major deep learning architectures in PyTorch. It covers neural networks, computer vision, CNNs, natural language processing (RNN), GANs, and reinforcement learning. You will also build deep learning workflows with the PyTorch framework, migrate models built in Python to highly efficient TorchScript, and deploy to production using the most sophisticated available tools.

Each chapter focuses on a different area of deep learning. Chapters start with a refresher on how the model works, before sharing the code you need to implement them in PyTorch.

This book is ideal if you want to rapidly add PyTorch to your deep learning toolset.

What you will learnUse PyTorch to build:

Simple Neural Networks - build neural networks the PyTorch way, with high-level functions, optimizers, and more
Convolutional Neural Networks - create advanced computer vision systems
Recurrent Neural Networks - work with sequential data such as natural language and audio
Generative Adversarial Networks - create new content with models including SimpleGAN and CycleGAN
Reinforcement Learning - develop systems that can solve complex problems such as driving or game playing
Deep Learning workflows - move effectively from ideation to production with proper deep learning workflow using PyTorch and its utility packages
Production-ready models - package your models for high-performance production environments

Who this book is forMachine learning engineers who want to put PyTorch to work.

Contents

Table of Contents

Deep Learning Walkthrough and PyTorch Introduction
A Simple Neural Network
Deep Learning Workflow
Computer Vision
Sequential Data Processing
Generative Networks
Reinforcement Learning
PyTorch to Production