Machine Learning Quick Reference : Quick and essential machine learning hacks for training smart data models

個数:
  • ポイントキャンペーン

Machine Learning Quick Reference : Quick and essential machine learning hacks for training smart data models

  • ウェブストア価格 ¥6,595(本体¥5,996)
  • Packt Publishing Limited(2019/01発売)
  • 外貨定価 US$ 32.99
  • 【ウェブストア限定】サマー!ポイント5倍キャンペーン 対象商品(~7/21)※店舗受取は対象外
  • ポイント 295pt
  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 294 p.
  • 言語 ENG
  • 商品コード 9781788830577
  • DDC分類 006.31

Full Description

Your hands-on reference guide to developing, training, and optimizing your machine learning models

Key Features

Your guide to learning efficient machine learning processes from scratch
Explore expert techniques and hacks for a variety of machine learning concepts
Write effective code in R, Python, Scala, and Spark to solve all your machine learning problems

Book DescriptionMachine learning makes it possible to learn about the unknowns and gain hidden insights into your datasets by mastering many tools and techniques. This book guides you to do just that in a very compact manner.

After giving a quick overview of what machine learning is all about, Machine Learning Quick Reference jumps right into its core algorithms and demonstrates how they can be applied to real-world scenarios. From model evaluation to optimizing their performance, this book will introduce you to the best practices in machine learning. Furthermore, you will also look at the more advanced aspects such as training neural networks and work with different kinds of data, such as text, time-series, and sequential data. Advanced methods and techniques such as causal inference, deep Gaussian processes, and more are also covered.

By the end of this book, you will be able to train fast, accurate machine learning models at your fingertips, which you can easily use as a point of reference.

What you will learn

Get a quick rundown of model selection, statistical modeling, and cross-validation
Choose the best machine learning algorithm to solve your problem
Explore kernel learning, neural networks, and time-series analysis
Train deep learning models and optimize them for maximum performance
Briefly cover Bayesian techniques and sentiment analysis in your NLP solution
Implement probabilistic graphical models and causal inferences
Measure and optimize the performance of your machine learning models

Who this book is forIf you're a machine learning practitioner, data scientist, machine learning developer, or engineer, this book will serve as a reference point in building machine learning solutions. You will also find this book useful if you're an intermediate machine learning developer or data scientist looking for a quick, handy reference to all the concepts of machine learning. You'll need some exposure to machine learning to get the best out of this book.

Contents

Table of Contents

Quantifying Learning Algorithms
Evaluating Kernel Learning
Performance in Ensemble Learning
Training Neural Networks
Time-Series Analysis
Natural Language Processing
Temporal and Sequential Pattern Discovery
Probabilistic Graphical Models
Selected Topics in Deep Learning
Causal Inference
Advanced Methods

最近チェックした商品