Python Tools for Scientists : An Introduction to Using Anaconda, JupyterLab, and Python's Scientific Libraries

個数:
電子版価格
¥6,119
  • 電子版あり

Python Tools for Scientists : An Introduction to Using Anaconda, JupyterLab, and Python's Scientific Libraries

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 744 p.
  • 言語 ENG
  • 商品コード 9781718502666
  • DDC分類 005.1330245

Full Description

Doing Science With Python introduces readers to the most popular coding tools for scientific research, such as Anaconda, Spyder, Jupyter Notebooks, and JupyterLab, as well as dozens of important Python libraries for working with data, including NumPy, matplotlib, and pandas. No prior programming experience is required! You'll be guided through setting up a professional coding environment, then get a crash course on programming with Python, and explore the many tools and libraries ideal for working with data, designing visualisations, simulating natural events, and more.

Contents

Introduction
Part 1: Setting up for Science
Chapter 1: Installing Anaconda and Launching Navigator
Chapter 2: Keeping Organized with Conda Environments
Chapter 3: Simple Scripting in Jupyter Qt Console
Chapter 4: Serious Scripting with Spyder
Chapter 5: Jupyter Notebook: An Interactive Journal for Computational Research
Chapter 6: JupyterLab: Your Center for Science
Part 2: Python Primer
Chapter 7: Integers, Floats, and Strings
Chapter 8: Variables
Chapter 9: The Container Data Types
Chapter 10: Flow Control
Chapter 11: Functions and Modules
Chapter 12: Files and Folders
Chapter 13: Object Oriented Programming
Chapter 14: Documenting your Work
Part 3: The Scientific and Visualization Libraries
Chapter 15: The Scientific Libraries
Chapter 16: The InfoVis and SciVis Visualization Libraries
Chapter 17: The GeoVis Libraries
Part 4: The Essential Libraries
Chapter 18: Numpy: Numerical Python
Chapter 19: Demystifying Matplotlib
Chapter 20: Pandas, Seaborn, and Scikit-learn
Chapter 21: Managing Dates and Times with Python and Pandas
Appendix A: Answers to the "Test your Knowledge" Challenges

最近チェックした商品