Data-Driven Multi-Microphone Speaker Localization on Manifolds (Foundations and Trends® in Signal Processing)

個数:

Data-Driven Multi-Microphone Speaker Localization on Manifolds (Foundations and Trends® in Signal Processing)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 176 p.
  • 言語 ENG
  • 商品コード 9781680837360
  • DDC分類 621.3828

Full Description

Acoustic source localization is an essential component in many modern day audio applications. For example, smart speakers require localization capabilities in order to determine the speakers in the scene and their role. Based on the location information, they can enhance a speaker or carry out location specific tasks, such as switching the lights on and off, steering a camera, etc. Localization has often been based on creating physical models which become extremely intricate in real-world applications. Recently, researchers have started using learning techniques to address localization problems.This monograph introduces the reader to the research and practical aspects behind the approach of learning the characteristics of the acoustic environment directly from the data rather than using a predefined physical model. Written by the experts in the field who have developed many of these techniques, it provides a comprehensive overview and insights into this burgeoning area of acoustic developments. The reader is introduced to the underlying mathematics before being introduced to the localization problem in depth. The core paradigm of using manifolds for diffusion mapping and distance is then described. Building on these concepts, the authors address both single and multiple manifold localization. Finally, manifold-based tracking is covered.

Data-Driven Multi-Microphone Speaker Localization on Manifolds is an illuminating introduction to designing and building acoustic systems where localization of multi-microphone and speakers forms an essential part of the system.

Contents

1. Background
2. Mathematical Foundations
3. Data Model and Acoustic Features
4. From High-Dimensional Representation to Low-Dimensional Manifold
5. Data-Driven Source Localization: A Single Microphone Pair
6. Bayesian Perspective
7. Data-Driven Source Localization: Ad Hoc Array
8. Data-Driven Speaker Tracking
9. Summary and Future Directions
References

最近チェックした商品