A Comprehensive Review of Modern Object Segmentation Approaches (Foundations and Trends® in Computer Graphics and Vision)

個数:

A Comprehensive Review of Modern Object Segmentation Approaches (Foundations and Trends® in Computer Graphics and Vision)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 188 p.
  • 言語 ENG
  • 商品コード 9781638280705
  • DDC分類 006.37

Full Description

Automated visual recognition tasks such as image classification, image captioning, object detection and image segmentation are essential for image and video processing. Of these, image segmentation is the task of associating pixels in an image with their respective object class labels. It has a wide range of applications within many industries, including healthcare, transportation, robotics, fashion, home improvement, and tourism.

In this monograph, both traditional and modern object segmentation approaches are investigated, comparing their strengths, weaknesses, and utilities. The main focus is on the deep learning-based techniques for the two most widely solved segmentation tasks: Semantic Segmentation and Instance Segmentation. A wide range of deep learning-based segmentation techniques developed in recent years are examined. Various themes emerge from these techniques that push machines to their limits, and often deviate from human perception principles. In addition, an overview of the widely used benchmark datasets for each of these techniques, along with the respective evaluation metrics to measure the models' performances, are presented. Potential future research directions conclude the monograph.

This monograph serves as a good introduction to the automated visual recognition task of image segmentation and is intended for students and professionals.

Contents

1. Introduction
2. Traditional Methods in Image Segmentation
3. Deep Models for Semantic Segmentation
4. Deep Models for Instance Segmentation
5. Deep Learning Models for 3D and Video Segmentation
6. Deep Learning Models for Panoptic Segmentation
7. Datasets
8. Evaluation Metrics
9. Challenges and Future Directions
10. Conclusion
Acknowledgements
References

最近チェックした商品