Deep Learning with PyTorch, Second Edition (2ND)

個数:
  • 予約

Deep Learning with PyTorch, Second Edition (2ND)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 600 p.
  • 言語 ENG
  • 商品コード 9781633438859

Full Description

Stop guessing at PyTorch syntax, start building production-ready models today. Bridge the gap between theory and working code with guided, hands-on projects. Confused by transformers and diffusion? Learn them through clear, incremental steps. Grow from basic tensors to complete neural networks without drowning in jargon. Feel confident diagnosing training issues using PyTorch's powerful visualization tools. Stay market-relevant by mastering the latest generative AI techniques right now. 



Project-based learning: Build an end-to-end medical image classifier that cements every concept. 



Flexible PyTorch APIs: Customize layers, losses, and optimizers for research or production speed. 



CNNs, RNNs, Transformers: Apply the right architecture to vision, language, and multimodal tasks. 



Generative models: Create text and images with large language models and diffusion networks. 



Optimization know-how: Improve accuracy, reduce inference cost, and streamline model deployment. 

Deep Learning with PyTorch, Second Edition, by Luca Antiga, Eli Stevens, Howard Huang, and Thomas Viehmann, delivers a credible, code-first roadmap for serious AI practitioners. The book guides you through every stage, from data loading to scaled deployment. 

Each chapter introduces a single concept, then immediately applies it to a working project. Updated coverage of transformers, diffusion, and distributed training keeps the content current. Friendly explanations, annotated code, and ample visuals make complex ideas clear and actionable. 

Finish the book able to design, train, and ship state-of-the-art models using PyTorch's flexible toolkit. You will upskill confidently and join the ranks of engineers pushing AI forward. 

Ideal for Python developers, data scientists, and ML engineers seeking practical mastery of modern deep learning.

Contents

PART 1: CORE PYTORCH 

1 INTRODUCING DEEP LEARNING AND THE PYTORCH LIBRARY 

2 PRETRAINED NETWORKS 

3 IT STARTS WITH A TENSOR 

4 REAL-WORLD DATA REPRESENTATION USING TENSORS  

5 THE MECHANICS OF LEARNING 

6 USING A NEURAL NETWORK TO FIT THE DATA 

7 TELLING BIRDS FROM AIRPLANES: LEARNING FROM IMAGES 

8 USING CONVOLUTIONS TO GENERALIZE 

PART 2: PRACTICAL APPLICATIONS 

9 HOW TRANSFORMERS WORK 

10 DIFFUSION MODELS FOR IMAGES 

11 USING PYTORCH TO FIGHT CANCER 

12 COMBINING DATA SOURCES INTO A UNIFIED DATASET 

13 TRAINING A CLASSIFICATION MODEL TO DETECT SUSPECTED TUMORS 

14 IMPROVING TRAINING WITH METRICS AND AUGMENTATION 

15 USING SEGMENTATION TO FIND SUSPECTED NODULES 

16 TRAINING MODELS ON MULTIPLE GPUS 

17 DEPLOYING TO PRODUCTION 

最近チェックした商品