Hugging Face in Action

個数:

Hugging Face in Action

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 368 p.
  • 言語 ENG
  • 商品コード 9781633436718

Full Description

AI libraries evolve weekly and tutorials rarely keep pace. Need a reliable playbook that simply works? Hugging Face in Action turns cutting-edge models into clear, runnable Python projects you can launch today. 

Inside you'll find: 



Utilizing Hugging Face Transformers and Pipelines for NLP tasks: Produce accurate NLP results without deep math or custom training.



Applying Hugging Face techniques for Computer Vision projects: Detect objects and classify images using pretrained models that save months. 



Manipulating Hugging Face Datasets for efficient data handling: Share data efficiently, eliminating fragile, one-off scripts.



Training Machine Learning models with AutoTrain functionality: Train custom models with almost no code, accelerating experiments and proofs of concept. 



Autonomous AI agents: Implement AI agents to automate tasks and integrate them into your applications. 



Developing LLM-based applications using LangChain and LlamaIndex: Build retrieval-augmented chatbots that answer from your private knowledge bases. 
 

Hugging Face in Action by Wei-Meng Lee delivers a step-by-step, project-based roadmap in print and eBook. Each chapter adds one layer of the modern Hugging Face ecosystem, reinforcing concepts through hands-on builds. 

Clear tips, checklists, and complete code samples help you avoid pitfalls and stay productive. 

You will start with simple text generation and progress to image classification, retrieval-augmented generation (RAG), and autonomous AI agents. Clear tips, checklists, and performance notes help you avoid common pitfalls while staying productive. 

By the end of this book, you will be ready to fine-tune models, manage datasets, and release AI features. Your solutions will remain maintainable as libraries evolve. 

Ideal for Python developers comfortable with NumPy or Pandas who want a fast, practical entry into applied AI.

Contents

INTRODUCTION TO HUGGING FACE
GETTING STARTED
USING HUGGING FACE TRANSFORMERS AND PIPELINES FOR NLP TASKS
USING HUGGING FACE FOR COMPUTER VISION TASKS
EXPLORING, TOKENIZING, AND VISUALIZING HUGGING FACE DATASETS
FINE-TUNING PRE-TRAINED MODELS AND WORKING WITH MULTIMODAL MODELS
AGENTS
CREATING LLM-BASED APPLICATIONS USING LANGCHAIN AND LLAMAINDEX
BUILDING LANGCHAIN APPLICATIONS VISUALLY USING LANGFLOW
BUILDING WEB-BASED UI USING GRADIO
BUILDING LOCALLY-RUNNING LLM-BASED APPLICATIONS USING GPT4ALL
USING LLMS TO QUERY YOUR LOCAL DATA

最近チェックした商品