Text Mining of Web-Based Medical Content

個数:

Text Mining of Web-Based Medical Content

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 284 p.
  • 言語 ENG
  • 商品コード 9781614515418
  • DDC分類 610.28

Full Description

• Includes Text Mining and Natural Language Processing Methods for extracting information from electronic health records and biomedical literature.
• Analyzes text analytic tools for new media such as online forums, social media posts, tweets and video sharing.
• Demonstrates how to use speech and audio technologies for improving access to online content for the visually impaired.

Text Mining of Web-Based Medical Content examines various approaches to deriving high quality information from online biomedical literature, electronic health records, query search terms, social media posts and tweets. Using some of the latest empirical methods of knowledge extraction, the authors show how online content, generated by both professionals and laypersons, can be mined for valuable information about disease processes, adverse drug reactions not captured during clinical trials, and tropical fever outbreaks. Additionally, the authors show how to perform infromation extraction on a hospital intranet, how to build a social media search engine to glean information about patients' own experiences interacting with healthcare professionals, and how to improve access to online health information.

This volume provides a wealth of timely material for health informatic professionals and machine learning, data mining, and natural language researchers.

Topics in this book include:
• Mining Biomedical Literature and Clinical Narratives
• Medication Information Extraction
• Machine Learning Techniques for Mining Medical Search Queries
• Detecting the Level of Personal Health Information Revealed in Social Media
• Curating Layperson's Personal Experiences with Health Care from Social Media and Twitter
• Health Dialogue Systems for Improving Access to Online Content
• Crowd-based Audio Clips to Improve Online Video Access for the Visually Impaired
• Semantic-based Visual Information Retrieval for Mining Radiographic Image Data
• Evaluating the Importance of Medical Terminology in YouTube Video Titles and Descriptions

Contents

Preface
I. Overview

1. The Social Impact of Medical Social Media on the Healthcare Delivery System

2. Demographics and Medical Social Media: What Can We Learn about Various Populations?

3. Differentiating Among Different Social Platforms for Sharing Medical Social Media

II. Mining Methods

4. What Are the Distinguishing Linguistic Characteristics of Medical Social Media Postings that Pose Difficulties for Data Mining

5. Comparing Existing Data Extraction Methods for Mining Medical Content on the Web

6. New Data Mapping Tools for Mining Medical Social Media

III. Future Projections

7. Where is Social Medicine Headed in Next 5-10 Years?

8. The Domino Effect of Improved Data Extraction Methods for Medical Social Media on other Forms of Social Media

最近チェックした商品