Backward Simulation Methods for Monte Carlo Statistical Inference (Foundations and Trends® in Machine Learning)

個数:

Backward Simulation Methods for Monte Carlo Statistical Inference (Foundations and Trends® in Machine Learning)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 158 p.
  • 言語 ENG
  • 商品コード 9781601986986

Full Description

Monte Carlo methods, in particular those based on Markov chains and on interacting particle systems, are by now tools that are routinely used in machine learning. These methods have had a profound impact on statistical inference in a wide range of application areas where probabilistic models are used. Moreover, there are many algorithms in machine learning that are based on the idea of processing the data sequentially; first in the forward direction, and then in the backward direction.

Backward Simulation Methods for Monte Carlo Statistical Inference reviews a branch of Monte Carlo methods that are based on the forward-backward idea, and that are referred to as backward simulators. In recent years, the theory and practice of backward simulation algorithms have undergone a significant development, and the algorithms keep finding new applications. The foundation for these methods is sequential Monte Carlo (SMC). SMC-based backward simulators are capable of addressing smoothing problems in sequential latent variable models, such as general, nonlinear/non-Gaussian state-space models (SSMs).

However, this book also clearly shows that the underlying backward simulation idea is by no means restricted to SSMs. Furthermore, backward simulation plays an important role in recent developments of Markov chain Monte Carlo (MCMC) methods. Particle MCMC is a systematic way of using SMC within MCMC. In this framework, backward simulation gives us a way to significantly improve the performance of the samplers.

This monograph discusses several related backward-simulation-based methods for state inference as well as learning of static parameters, both using a frequentistic and a Bayesian approach. This is an excellent primer for anyone interested in this active research area.

Contents

1: Introduction 2: Monte Carlo Preliminaries 3: Backward Simulation for State-space Models 4: Backward Simulation for General Sequential Models 5: Backward Simulation in Particle MCMC 6: Discussion. Acknowledgements. Notations and Acronyms. References

最近チェックした商品