Spectral Algorithms (Foundations and Trends® in Theoretical Computer Science)

個数:

Spectral Algorithms (Foundations and Trends® in Theoretical Computer Science)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 152 p.
  • 言語 ENG
  • 商品コード 9781601982742
  • DDC分類 515.7222

Full Description

Spectral methods refer to the use of eigenvalues, eigenvectors, singular values and singular vectors and they are widely used in Engineering, Applied Mathematics and Statistics. More recently, spectral methods have found numerous applications in Computer Science to ""discrete"" as well ""continuous"" problems.

Spectral Algorithms describes modern applications of spectral methods, and novel algorithms for estimating spectral parameters. The first part of the book presents applications of spectral methods to problems from a variety of topics including combinatorial optimization, learning and clustering. The second part is motivated by efficiency considerations. A feature of many modern applications is the massive amount of input data. While sophisticated algorithms for matrix computations have been developed over a century, a more recent development is algorithms based on ""sampling on the y"" from massive matrices. Good estimates of singular values and low rank approximations of the whole matrix can be provably derived from a sample. The main emphasis in the second part of the book is to present these sampling methods with rigorous error bounds. It also presents recent extensions of spectral methods from matrices to tensors and their applications to some combinatorial optimization problems.

Contents

Part I Applications 1: The Best-Fit Subspace 2: Mixture Models 3: Probabilistic Spectral Clustering 4: Recursive Spectral Clustering 5: Optimization via Low-Rank Approximation Part II Algorithms 6: Matrix Approximation via Random Sampling 7: Adaptive Sampling Methods 8: Extensions of SVD. References.

最近チェックした商品