マルコフ連鎖モンテカルロ(第2版)<br>Markov Chain Monte Carlo : Stochastic Simulation for Bayesian Inference, Second Edition (Chapman & Hall/crc Texts in Statistical Science) (2ND)

個数:

マルコフ連鎖モンテカルロ(第2版)
Markov Chain Monte Carlo : Stochastic Simulation for Bayesian Inference, Second Edition (Chapman & Hall/crc Texts in Statistical Science) (2ND)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 342 p.
  • 言語 ENG
  • 商品コード 9781584885870
  • DDC分類 519.542

基本説明

Includes new chapters on Gibbs sampling and Metropolis-Hastings algorithms. It incorporates all the recent developments in MCMC and also features many worked examples and discusses computation using both Rand WinBugs as well as the interface BRugs.

Full Description

While there have been few theoretical contributions on the Markov Chain Monte Carlo (MCMC) methods in the past decade, current understanding and application of MCMC to the solution of inference problems has increased by leaps and bounds. Incorporating changes in theory and highlighting new applications, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition presents a concise, accessible, and comprehensive introduction to the methods of this valuable simulation technique. The second edition includes access to an internet site that provides the code, written in R and WinBUGS, used in many of the previously existing and new examples and exercises. More importantly, the self-explanatory nature of the codes will enable modification of the inputs to the codes and variation on many directions will be available for further exploration.

Major changes from the previous edition:

· More examples with discussion of computational details in chapters on Gibbs sampling and Metropolis-Hastings algorithms

· Recent developments in MCMC, including reversible jump, slice sampling, bridge sampling, path sampling, multiple-try, and delayed rejection

· Discussion of computation using both R and WinBUGS

· Additional exercises and selected solutions within the text, with all data sets and software available for download from the Web

· Sections on spatial models and model adequacy

The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. The book will appeal to everyone working with MCMC techniques, especially research and graduate statisticians and biostatisticians, and scientists handling data and formulating models. The book has been substantially reinforced as a first reading of material on MCMC and, consequently, as a textbook for modern Bayesian computation and Bayesian inference courses.

Contents

Introduction. Bayesian Inference. Approximate Methods of Inference. Markov Chains. MCMC. Gibbs Sampling. Metropolis-Hastings Algorithms. Further Topics in MCMC.

最近チェックした商品