An R Companion to Applied Regression (3RD)

個数:
電子版価格
¥13,671
  • 電子版あり

An R Companion to Applied Regression (3RD)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 608 p.
  • 言語 ENG
  • 商品コード 9781544336473
  • DDC分類 519.5360285

Full Description

An R Companion to Applied Regression is a broad introduction to the R statistical computing environment in the context of applied regression analysis. John Fox and Sanford Weisberg provide a step-by-step guide to using the free statistical software R, an emphasis on integrating statistical computing in R with the practice of data analysis, coverage of generalized linear models, and substantial web-based support materials. The Third Edition has been reorganized and includes a new chapter on mixed-effects models, new and updated data sets, and a de-emphasis on statistical programming, while retaining a general introduction to basic R programming. The authors have substantially updated both the car and effects packages for R for this edition, introducing additional capabilities and making the software more consistent and easier to use. They also advocate an everyday data-analysis workflow that encourages reproducible research. To this end, they provide coverage of RStudio, an interactive development environment for R that allows readers to organize and document their work in a simple and intuitive fashion, and then easily share their results with others. Also included is coverage of R Markdown, showing how to create documents that mix R commands with explanatory text. 

"An R Companion to Applied Regression continues to provide the most comprehensive and user-friendly guide to estimating, interpreting, and presenting results from regression models in R."

-Christopher Hare, University of California, Davis

Contents

1. Getting Started with R and RStudio
Projects in RStudio
R Basics
Fixing Errors and Getting Help
Organizing Your Work in R and RStudio
An Extended Illustration
R Functions for Basic Statistics
Generic Functions and Their Methods*
2. Reading and Manipulating Data
Data Input
Managing Data
Working With Data Frames
Matrices, Arrays, and Lists
Dates and Times
Character Data
Large Data Sets in R*
Complementary Reading and References
3. Exploring and Transforming Data
Examining Distributions
Examining Relationships
Examining Multivariate Data
Transforming Data
Point Labeling and Identication
Scatterplot Smoothing
Complementary Reading and References
4. Fitting Linear Models
The Linear Model
Linear Least-Squares Regression
Predictor Effect Plots
Polynomial Regression and Regression Splines
Factors in Linear Models
Linear Models with Interactions
More on Factors
Too Many Regressors*
The Arguments of the lm Function
Complementary Reading and References
5. Standard Errors, Confidence Intervals, Tests
Coefficient Standard Errors
Confidence Intervals
Testing Hypotheses About Regression Coefficients
Complementary Reading and References
6. Fitting Generalized Linear Models
The Structure of GLMs
The glm() Function in R
GLMs for Binary-Response Data
Binomial Data
Poisson GLMs for Count Data
Loglinear Models for Contingency Tables
Multinomial Response Data
Nested Dichotomies
The Proportional-Odds Model
Extensions
Arguments to glm()
Fitting GLMs by Iterated Weighted Least-Squares*
Complementary Reading and References
7. Fitting Mixed-Effects Models
Background: The Linear Model Revisited
Linear Mixed-Effects Models
Generalized Linear Mixed Models
Complementary Reading
8. Regression Diagnostics
Residuals
Basic Diagnostic Plots
Unusual Data
Transformations After Fitting a Regression Model
Non-Constant Error Variance
Diagnostics for Generalized Linear Models
Diagnostics for Mixed-Effects Models
Collinearity and Variance-Inflation Factors
Additional Regression Diagnostics
Complementary Reading and References
9. Drawing Graphs
A General Approach to R Graphics
Putting It Together: Local Linear Regression
Other R Graphics Packages
Complementary Reading and References
10. An Introduction to R Programming
Why Learn to Program in R?
Defining Functions: Preliminary Examples
Working With Matrices*
Conditionals, Loops, and Recursion
Avoiding Loops
Optimization Problems*
Monte-Carlo Simulations*
Debugging R Code*
Object-Oriented Programming in R*
Writing Statistical-Modeling Functions in R*
Organizing Code for R Functions
Complementary Reading and References

最近チェックした商品