システム生物学のためのデータマイニング:手法・プロトコル(第2版)<br>Data Mining for Systems Biology : Methods and Protocols (Methods in Molecular Biology) (2ND)

個数:

システム生物学のためのデータマイニング:手法・プロトコル(第2版)
Data Mining for Systems Biology : Methods and Protocols (Methods in Molecular Biology) (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 243 p.
  • 言語 ENG
  • 商品コード 9781493985609
  • DDC分類 571

Full Description

This fully updated book collects numerous data mining techniques, reflecting the acceleration and diversity of the development of data-driven approaches to the life sciences. The first half of the volume examines genomics, particularly metagenomics and epigenomics, which promise to deepen our knowledge of genes and genomes, while the second half of the book emphasizes metabolism and the metabolome as well as relevant medicine-oriented subjects. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and expert implementation advice that is useful for getting optimal results. 
Authoritative and practical, Data Mining for Systems Biology: Methods and Protocols, Second Edition serves as an ideal resource for researchers of biology and relevant fields, such as medical, pharmaceutical, and agricultural sciences, as well as for the scientists and engineers who are working on developing data-driven techniques, such as databases, data sciences, data mining, visualization systems, and machine learning or artificial intelligence that now are central to the paradigm-altering discoveries being made with a higher frequency.

Contents

Identifying Bacterial Strains from Sequencing Data.- MetaVW: Large-Scale Machine Learning for Metagenomics Sequence Classification.- Online Interactive Microbial Classification and Geospatial Distributional Analysis Using BioAtlas.- Generative Models for Quantification of DNA Modifications.- DiMmer: Discovery of Differentially Methylated Regions in Epigenome-Wide Association Study (EWAS) Data.- Implementing a Transcription Factor Interaction Prediction System Using the GenoMetric Query Language.- Multiple Testing Tool to Detect Combinatorial Effects in Biology.- SiBIC: A Tool for Generating a Network of Biclusters Captured by Maximal Frequent Itemset Mining.- Computing and Visualizing Gene Function Similarity and Coherence with NaviGO.- Analyzing Glycan Binding Profiles Using Weighted Multiple Alignment of Trees.- Analysis of Fluxomic Experiments with Principal Metabolic Flux Mode Analysis.- Analyzing Tandem Mass Spectra Using the DRIP Toolkit: Training, Searching, and Post-Processing.- Sparse Modeling to Analyze Drug-Target Interaction Networks.- DrugE-Rank: Predicting Drug-Target Interactions by Learning to Rank.- MeSHLabeler and DeepMeSH: Recent Progress in Large-Scale MeSH Indexing.- Disease Gene Classification with Metagraph Representations.- Inferring Antimicrobial Resistance from Pathogen Genomes in KEGG.

最近チェックした商品