Robust Intelligence and Trust in Autonomous Systems

個数:

Robust Intelligence and Trust in Autonomous Systems

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 270 p.
  • 言語 ENG
  • 商品コード 9781493979462
  • DDC分類 006.3

Full Description

This volume explores the intersection of robust intelligence (RI) and trust in autonomous systems across multiple contexts among autonomous hybrid systems, where hybrids are arbitrary combinations of humans, machines and robots. To better understand the relationships between artificial intelligence (AI) and RI in a way that promotes trust between autonomous systems and human users, this book explores the underlying theory, mathematics, computational models, and field applications.  It uniquely unifies the fields of RI and trust and frames it in a broader context, namely the effective integration of human-autonomous systems. 

A description of the current state of the art in RI and trust introduces the research work in this area.  With this foundation, the chapters further elaborate on key research areas and gaps that are at the heart of effective human-systems integration, including workload management, human computer interfaces, team integration and performance, advanced analytics, behavior modeling, training, and, lastly, test and evaluation. 

Written by international leading researchers from across the field of autonomous systems research, Robust Intelligence and Trust in Autonomous Systems dedicates itself to thoroughly examining the challenges and trends of systems that exhibit RI, the fundamental implications of RI in developing trusted relationships with present and future autonomous systems, and the effective human systems integration that must result for trust to be sustained.

Contributing authors:  David W. Aha, Jenny Burke, Joseph Coyne, M.L. Cummings, Munjal Desai, Michael Drinkwater, Jill L. Drury, Michael W. Floyd, Fei Gao, Vladimir Gontar, Ayanna M. Howard, Mo Jamshidi, W.F. Lawless, Kapil Madathil, Ranjeev Mittu, Arezou Moussavi, Gari Palmer, Paul Robinette, Behzad Sadrfaridpour, Hamed Saeidi, Kristin E. Schaefer, Anne Selwyn, Ciara Sibley, Donald A. Sofge, Erin Solovey, Aaron Steinfeld, Barney Tannahill, Gavin Taylor, Alan R. Wagner, Yue Wang, Holly A. Yanco, Dan Zwillinger.

Contents

Introduction.- Towards modeling the behavior of autonomous systems and humans for trusted operations.- Learning trustworthy behaviors using an inverse trust metric.-  The "Trust V"—Building and measuring trust in autonomous systems.- Big Data analytic paradigms—From principle component analysis to deep learning.- Artificial brain systems based on neural network discrete chaotic dynamics. Toward the development of conscious and rational robots.- Modeling and control of trust in human-robot collaborative manufacturing.- Investigating human-robot trust in emergency scenarios: methodological lessons learned.- Designing for robust and effective teamwork in human-agent teams.- Measuring Trust in Human Robot Interactions: Development of the "Trust Perception Scale-HRI".- Methods for developing trust models for intelligent systems.- The intersection of robust intelligence and trust: Hybrid teams, firms & systems.

最近チェックした商品