Reliable Knowledge Discovery (2012)

個数:

Reliable Knowledge Discovery (2012)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 310 p.
  • 言語 ENG
  • 商品コード 9781489995322
  • DDC分類 006

Full Description

Reliable Knowledge Discovery focuses on theory, methods, and techniques for RKDD, a new sub-field of KDD. It studies the theory and methods to assure the reliability and trustworthiness of discovered knowledge and to maintain the stability and consistency of knowledge discovery processes. RKDD has a broad spectrum of applications, especially in critical domains like medicine, finance, and military.

Reliable Knowledge Discovery also presents methods and techniques for designing robust knowledge-discovery processes. Approaches to assessing the reliability of the discovered knowledge are introduced. Particular attention is paid to methods for reliable feature selection, reliable graph discovery, reliable classification, and stream mining. Estimating the data trustworthiness is covered in this volume as well. Case studies are provided in many chapters.

Reliable Knowledge Discovery is designed for researchers and advanced-level students focused on computer science and electrical engineering as a secondary text or reference. Professionals working in this related field and KDD application developers will also find this book useful.

Contents

Transductive Reliability Estimation for Individual Classifications in Machine Learning and Data Mining.- Estimating Reliability for Assessing and Correcting Individual Streaming Predictions.- Error Bars for Polynomial Neural Networks.- Robust-Diagnostic Regression: A Prelude for Inducing Reliable Knowledge from Regression.- Reliable Graph Discovery.- Combining Version Spaces and Support Vector Machines for Reliable Classification.- Reliable Ticket Routing in Expert Networks.- Reliable Aggregation on Network Traffic for Web Based Knowledge Discovery.- Sensitivity and Generalization of SVM with Weighted and Reduced Features.- Reliable Gesture Recognition with Transductivie Confidence Machines.- Reliability in A Feature-Selection Process for Intrusion Detection.- The Impact of Sample Size and Data Quality to Classification Reliability.- A Comparative Analysis of Instance-based Penalization Techniques for Classification.- Subsequence Frequency Measurement and its Impact on Reliability of Knowledge Discovery in Single Sequences.- Improving Reliability of Unbalanced Text Mining by Reducing Performance Bias.- Formal Representation and Verification of Ontology Using State Controlled Coloured Petri Nets.- A Reliable System Platform for Group Decision Support under Uncertain Environments.- Index.

最近チェックした商品