Machine Learning for Auditors : Automating Fraud Investigations through Artificial Intelligence (1st)

個数:

Machine Learning for Auditors : Automating Fraud Investigations through Artificial Intelligence (1st)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 242 p.
  • 言語 ENG
  • 商品コード 9781484280508
  • DDC分類 006

Full Description

Use artificial intelligence (AI) techniques to build tools for auditing your organization. This is a practical book with implementation recipes that demystify AI, ML, and data science and their roles as applied to auditing. You will learn about data analysis techniques that will help you gain insights into your data and become a better data storyteller. The guidance in this book around applying artificial intelligence in support of audit investigations helps you gain credibility and trust with your internal and external clients. A systematic process to verify your findings is also discussed to ensure the accuracy of your findings.
Machine Learning for Auditors provides an emphasis on domain knowledge over complex data science know how that enables you to think like a data scientist. The book helps you achieve the objectives of safeguarding the confidentiality, integrity, and availability of your organizational assets. Data science does not need to be an intimidating concept for audit managers and directors. With the knowledge in this book, you can leverage simple concepts that are beyond mere buzz words to practice innovation in your team. You can build your credibility and trust with your internal and external clients by understanding the data that drives your organization.

What You Will Learn

Understand the role of auditors as trusted advisors
Perform exploratory data analysis to gain a deeper understanding of your organization
Build machine learning predictive models that detect fraudulent vendor payments and expenses
Integrate data analytics with existing and new technologies
Leverage storytelling to communicate and validate your findings effectively
Apply practical implementation use cases within your organization

Who This Book Is For
AI Auditing is for internal auditors who are looking to use data analytics and data science to better understand their organizational data. It is for auditors interested in implementing predictive and prescriptive analytics in support of better decision making and risk-based testing of your organizational processes. 

Contents

Part I. Trusted Advisors.- 1. Three Lines of Defense.- 2. Common Audit Challenges.- 3. Existing Solutions.- 4. Data Analytics.- 5. Analytics Structure & Environment.- Part II. Understanding Artificial Intelligence.- 6. Introduction to AI, Data Science, and Machine Learning.- 7. Myths and Misconceptions.- 8. Trust, but Verify.- 9. Machine Learning Fundamentals.- 10. Data Lakes.- 11. Leveraging the Cloud.- 12. SCADA and Operational Technology.- Part III. Storytelling.- 13. What is Storytelling?.- 14. Why Storytelling?.- 15. When to Use Storytelling.- 16. Types of Visualizations.- 17. Effective Stories.- 18. Storytelling Tools.- 19. Storytelling in Auditing.- Part IV.  Implementation Recipes.- 20. How to Use the Recipes.- 21. Fraud and Anomaly Detection.- 22. Access Management.- 23. Project Management.- 24. Data Exploration.- 25. Vendor Duplicate Payments.- 26. CAATs 2.0.- 27. Log Analysis.- 28. Concluding Remarks.

最近チェックした商品