Hands-on Machine Learning with Python : Implement Neural Network Solutions with Scikit-learn and PyTorch (1st)

個数:

Hands-on Machine Learning with Python : Implement Neural Network Solutions with Scikit-learn and PyTorch (1st)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 335 p.
  • 言語 ENG
  • 商品コード 9781484279205
  • DDC分類 006

Full Description

Here is the perfect comprehensive guide for readers with basic to intermediate level knowledge of machine learning and deep learning. It introduces tools such as NumPy for numerical processing, Pandas for panel data analysis, Matplotlib for visualization, Scikit-learn for machine learning, and Pytorch for deep learning with Python. It also serves as a long-term reference manual for the practitioners who will find solutions to commonly occurring scenarios.
The book is divided into three sections. The first section introduces you to number crunching and data analysis tools using Python with in-depth explanation on environment configuration, data loading, numerical processing, data analysis, and visualizations. The second section covers machine learning basics and Scikit-learn library. It also explains supervised learning, unsupervised learning, implementation, and classification of regression algorithms, and ensemble learning methods in an easy manner with theoreticaland practical lessons. The third section explains complex neural network architectures with details on internal working and implementation of convolutional neural networks. The final chapter contains a detailed end-to-end solution with neural networks in Pytorch.
After completing Hands-on Machine Learning with Python, you will be able to implement machine learning and neural network solutions and extend them to your advantage. 
What You'll Learn

Review data structures in NumPy and Pandas 
Demonstrate machine learning techniques and algorithm
Understand supervised learning and unsupervised learning 
Examine convolutional neural networks and Recurrent neural networks
Get acquainted with scikit-learn and PyTorch
Predict sequences in recurrent neural networks and long short term memory 

Who This Book Is For
Data scientists, machine learning engineers, and software professionals with basic skills in Python programming.

Contents

Chapter 1: Getting Started with Python 3 and Jupyter Notebook.- Chapter 2: Getting Started with NumPy.- Chapter 3 : Introduction to Data Visualization.- Chapter 4 : Introduction to Pandas .- Chapter 5: Introduction to Machine Learning with Scikit-Learn.- Chapter 6: Preparing Data for Machine Learning.- Chapter 7: Supervised Learning Methods - 1.- Chapter 8: Tuning Supervised Learners.- Chapter 9: Supervised Learning Methods - 2.- Chapter 10: Ensemble Learning Methods.- Chapter 11: Unsupervised Learning Methods.- Chapter 12: Neural Networks and Pytorch Basics.- Chapter 13: Feedforward Neural Networks.- Chapter 14: Convolutional Neural Network.- Chapter 15: Recurrent Neural Network.- Chapter 16: Bringing It All Together.

最近チェックした商品