Quantum Machine Learning with Python : Using Cirq from Google Research and IBM Qiskit (1st)

個数:

Quantum Machine Learning with Python : Using Cirq from Google Research and IBM Qiskit (1st)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 361 p.
  • 言語 ENG
  • 商品コード 9781484265215
  • DDC分類 006

Full Description

Quickly scale up to Quantum computing and Quantum machine learning foundations and related mathematics and expose them to different use cases that can be solved through Quantum based algorithms.This book explains Quantum Computing, which leverages the Quantum mechanical properties sub-atomic particles. It also examines Quantum machine learning, which can help solve some of the most challenging problems in forecasting, financial modeling, genomics, cybersecurity, supply chain logistics, cryptography among others.
You'll start by reviewing the fundamental concepts of Quantum Computing, such as Dirac Notations, Qubits, and Bell state, followed by postulates and mathematical foundations of Quantum Computing. Once the foundation base is set, you'll delve deep into Quantum based algorithms including Quantum Fourier transform, phase estimation, and HHL (Harrow-Hassidim-Lloyd) among others. 
You'll then be introduced to Quantum machine learning and Quantum deep learning-based algorithms, along with advanced topics of Quantum adiabatic processes and Quantum based optimization. Throughout the book, there are Python implementations of different Quantum machine learning and Quantum computing algorithms using the Qiskit toolkit from IBM and Cirq from Google Research.
What You'll Learn

Understand Quantum computing and Quantum machine learning
Explore varied domains and the scenarios where Quantum machine learning solutions can be applied
Develop expertise in algorithm development in varied Quantum computing frameworks
Review the major challenges of building large scale Quantum computers and applying its various techniques

Who This Book Is For
Machine Learning enthusiasts and engineers who want to quickly scale up to Quantum Machine Learning

Contents

Chapter 1: Introduction to Quantum Mechanics and Quantum Computing.- Chapter 2:  Mathematical Foundations and Postulates of Quantum Computing.- Chapter 3: Introduction to Quantum Algorithms .- Chapter 4:  Quantum Fourier Transform Related Algorithms.- PART 2 Chapter 5: Introduction to Quantum Machine Learning .- Chapter 6: Quantum Deep Learning and Quantum Optimization Based Algorithms.- Chapter 7: Quantum Adiabatic Processes and Quantum based Optimization.