Hands-on Time Series Analysis with Python : From Basics to Bleeding Edge Techniques (1st)

個数:

Hands-on Time Series Analysis with Python : From Basics to Bleeding Edge Techniques (1st)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 407 p.
  • 言語 ENG
  • 商品コード 9781484259917
  • DDC分類 006

Full Description

Learn the concepts of time series from traditional to bleeding-edge techniques.  This book uses comprehensive examples to clearly illustrate statistical approaches and methods of analyzing time series data and its utilization in the real world. All the code is available in Jupyter notebooks.
You'll begin by reviewing time series fundamentals, the structure of time series data, pre-processing, and how to craft the features through data wrangling. Next, you'll look at traditional time series techniques like ARMA, SARIMAX, VAR, and VARMA using trending framework like StatsModels and pmdarima. 

The book also explains building classification models using sktime, and covers advanced deep learning-based techniques like ANN, CNN, RNN, LSTM, GRU and Autoencoder to solve time series problem using Tensorflow. It concludes by explaining the popular framework fbprophet for modeling time series analysis. After reading Hands-On Time Series Analysis with Python, you'll be able to apply these new techniques in industries, such as oil and gas, robotics, manufacturing, government, banking, retail, healthcare, and more. 
What You'll Learn:·  Explains basics to advanced concepts of time series

·  How to design, develop, train, and validate time-series methodologies

·  What are smoothing, ARMA, ARIMA, SARIMA,SRIMAX, VAR, VARMA techniques in time series and how to optimally tune parameters to yield best results

·  Learn how to leverage bleeding-edge techniques such as ANN, CNN, RNN, LSTM, GRU, Autoencoder  to solve both Univariate and multivariate problems by using two types of data preparation methods for time series.

·  Univariate and multivariate problem solving using fbprophet.

Who This Book Is For
Data scientists, data analysts, financial analysts, and stock market researchers

Contents

Chapter 1: Time Series and its Characteristics.- Chapter 2: Data Wrangling and Preparation for Time Series.- Chapter 3: Smoothing Methods.- Chapter 4: Regression Extension Techniques for Time Series.- Chapter 5: Bleeding Edge Techniques.- Chapter 6: Bleeding Edge Techniques for Univariate Time Series.- Chapter 7: Bleeding Edge Techniques for Multivariate Time Series.- Chapter 8: Prophet.

最近チェックした商品