Agile Machine Learning : Effective Machine Learning Inspired by the Agile Manifesto (1st)

個数:
電子版価格
¥13,486
  • 電子版あり

Agile Machine Learning : Effective Machine Learning Inspired by the Agile Manifesto (1st)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 248 p.
  • 言語 ENG
  • 商品コード 9781484251065
  • DDC分類 005

Full Description

Build resilient applied machine learning teams that deliver better data products through adapting the guiding principles of the Agile Manifesto.

Bringing together talented people to create a great applied machine learning team is no small feat. With developers and data scientists both contributing expertise in their respective fields, communication alone can be a challenge. Agile Machine Learning teaches you how to deliver superior data products through agile processes and to learn, by example, how to organize and manage a fast-paced team challenged with solving novel data problems at scale, in a production environment.

The authors' approach models the ground-breaking engineering principles described in the Agile Manifesto. The book provides further context, and contrasts the original principles with the requirements of systems that deliver a data product.

What You'll Learn

Effectively run a data engineeringteam that is metrics-focused, experiment-focused, and data-focused

Make sound implementation and model exploration decisions based on the data and the metrics

Know the importance of data wallowing: analyzing data in real time in a group setting

Recognize the value of always being able to measure your current state objectively

Understand data literacy, a key attribute of a reliable data engineer, from definitions to expectations

Who This Book Is For

Anyone who manages a machine learning team, or is responsible for creating production-ready inference components. Anyone responsible for data project workflow of sampling data; labeling, training, testing, improving, and maintaining models; and system and data metrics will also find this book useful. Readers should be familiar with software engineering and understand the basics of machine learning and working with data.

Contents

Chapter 1: Early Delivery.- Chapter 2: Changing Requirements.- Chapter 3: Continuous Delivery.- Chapter 4: Aligning with the Business.- Chapter 5: Motivated Individuals.- Chapter 6: Effective Communication.- Chapter 7: Monitoring.- Chapter 8: Sustainable Development.- Chapter 9: Technical Excellence.- Chapter 10 Simplicity.- Chapter 11: Self-organizing Teams.- Chapter 12: Tuning and Adjusting.- Chapter 13: Conclusion.

最近チェックした商品