Practical Apache Spark : Using the Scala API (1st)

個数:
電子版価格
¥10,619
  • 電子版あり

Practical Apache Spark : Using the Scala API (1st)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 280 p.
  • 言語 ENG
  • 商品コード 9781484236512
  • DDC分類 005

Full Description

Work with Apache Spark using Scala to deploy and set up single-node, multi-node, and high-availability clusters. This book discusses various components of Spark such as Spark Core, DataFrames, Datasets and SQL, Spark Streaming, Spark MLib, and R on Spark with the help of practical code snippets for each topic. Practical Apache Spark also covers the integration of Apache Spark with Kafka with examples. You'll follow a learn-to-do-by-yourself approach to learning - learn the concepts, practice the code snippets in Scala, and complete the assignments given to get an overall exposure. 
On completion, you'll have knowledge of the functional programming aspects of Scala, and hands-on expertise in various Spark components. You'll also become familiar with machine learning algorithms with real-time usage.
What You Will Learn

Discover the functional programming features of Scala

Understand the completearchitecture of Spark and its components
Integrate Apache Spark with Hive and Kafka 

Use Spark SQL, DataFrames, and Datasets to process data using traditional SQL queries

Work with different machine learning concepts and libraries using Spark's MLlib packages

Who This Book Is For
Developers and professionals who deal with batch and stream data processing. 

Contents

1. Scala - Functional Programming Aspects. - 2. Single & Multi-node cluster setup. - 3. Introduction to Apache Spark and Spark Core. - 4. Spark SQL, Dataframes & Datasets. - 5. Introduction to Spark Streaming. - 6. Spark Structured Streaming. - 7. Spark Streaming with Kafka. - 8. Spark Machine Learning Library. - 9. Working with SparkR. - 10. Spark - Real time use case.