実践Pythonで機械学習ガイド<br>Practical Machine Learning with Python : A Problem-Solver's Guide to Building Real-World Intelligent Systems (1st)

個数:
電子版価格
¥14,637
  • 電子版あり

実践Pythonで機械学習ガイド
Practical Machine Learning with Python : A Problem-Solver's Guide to Building Real-World Intelligent Systems (1st)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 530 p.
  • 言語 ENG
  • 商品コード 9781484232064
  • DDC分類 004

Full Description

Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully.

Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code.

Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries andframeworks are also covered.

Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment.

Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem.

Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today!

What You'll Learn

Execute end-to-end machine learning projects and systems

Implement hands-on examples with industry standard, open source, robust machine learning tools and frameworks

Review case studies depicting applications of machine learning and deep learning on diverse domains and industries
Apply a wide range of machine learning models including regression, classification, and clustering.
Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning.

Who This Book Is For
IT professionals, analysts, developers, data scientists, engineers, graduate students

Contents

Chapter 1:  Machine Learning Basics.- Chapter 2:  The Python Machine Learning Ecosystem.- Chapter 3: Processing, Wrangling and Visualizing Data.-Chapter 4:  Feature Engineering and Selection.- Chapter 5: Building, Tuning and Deploying Models.-Chapter 6: Analyzing Bike Sharing Trends.- Chapter 7: Analyzing Movie Reviews Sentiment.- Chapter 8: Customer Segmentation and Effective Cross Selling.- Chapter 9: Analyzing Wine Types and Quality.- Chapter 10: Analyzing Music Trends and Recommendations.- Chapter 11: Forecasting Stock and Commodity Prices.- Chapter 12: Deep Learning for Computer Vision.

最近チェックした商品