Knowledge Discovery for Business Information Systems (The Springer International Series in Engineering and Computer Science)

個数:

Knowledge Discovery for Business Information Systems (The Springer International Series in Engineering and Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 432 p.
  • 言語 ENG
  • 商品コード 9781475774757
  • DDC分類 003

Full Description

Current database technology and computer hardware allow us to gather, store, access, and manipulate massive volumes of raw data in an efficient and inexpensive manner. In addition, the amount of data collected and warehoused in all industries is growing every year at a phenomenal rate. Nevertheless, our ability to discover critical, non-obvious nuggets of useful information in data that could influence or help in the decision making process, is still limited.
Knowledge discovery (KDD) and Data Mining (DM) is a new, multidisciplinary field that focuses on the overall process of information discovery from large volumes of data. The field combines database concepts and theory, machine learning, pattern recognition, statistics, artificial intelligence, uncertainty management, and high-performance computing.
To remain competitive, businesses must apply data mining techniques such as classification, prediction, and clustering using tools such as neural networks, fuzzy logic, and decision trees to facilitate making strategic decisions on a daily basis.
Knowledge Discovery for Business Information Systems contains a collection of 16 high quality articles written by experts in the KDD and DM field from the following countries: Austria, Australia, Bulgaria, Canada, China (Hong Kong), Estonia, Denmark, Germany, Italy, Poland, Singapore and USA.

Contents

Information Filters Supplying Data Warehouses with Benchmarking Information.- Parallel Mining of Association Rules.- Unsupervised Feature Ranking and Selection.- Approaches to Concept Based Exploration of Information Resources.- Hybrid Methodology of Knowledge Discovery for Business Information.- Fuzzy Linguistic Summaries of Databases for an Efficient Business Data Analysis and Decision Support.- Integrating Data Sources Using a Standardized Global Dictionary.- Maintenance of Discovered Association Rules.- Multidimensional Business Process Analysis with the Process Warehouse.- Amalgamation of Statistics and Data Mining Techniques: Explorations in Customer Lifetime Value Modeling.- Robust Business Intelligence Solutions.- The Role of Granular Information in Knowledge Discovery in Databases.- Dealing with Dimensions in Data Warehousing.- Enhancing the KDD Process in the Relational Database Mining Framework by Quantitative Evaluation of Association Rules.- Speeding up Hypothesis Development.- Sequence Mining in Dynamic and Interactive Environments.- Investigation of Artificial Neural Networks for Classifying Levels of Financial Distress of Firms: The Case of an Unbalanced Training Sample.

最近チェックした商品