Computational Inelasticity (Interdisciplinary Applied Mathematics)

個数:

Computational Inelasticity (Interdisciplinary Applied Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 392 p.
  • 言語 ENG
  • 商品コード 9781475771695
  • DDC分類 005

Full Description

This book goes back a long way. There is a tradition of research and teaching in inelasticity at Stanford that goes back at least to Wilhelm Flugge ¨ and Erastus Lee. I joined the faculty in 1980, and shortly thereafter the Chairman of the Applied Mechanics Division, George Herrmann, asked me to present a course in plasticity. I decided to develop a new two-quarter sequence entitled "Theoretical and C- putational Plasticity" which combined the basic theory I had learned as a graduate student at the University of California at Berkeley from David Bogy, James Kelly, Jacob Lubliner, and Paul Naghdi with new computational techniques from the ?nite-element literature and my personal research. I taught the course a couple of times and developed a set of notes that I passed on to Juan Simo when he joined thefacultyin1985. IwasChairmanatthattimeandIaskedJuantofurtherdevelop the course into a full year covering inelasticity from a more comprehensive p- spective. Juan embarked on this path creating what was to become his signature course. He eventually renamed it "Computational and Theoretical Inelasticity" and it covered much of the material that was the basis of his research in material modeling and simulation for which he achieved international recognition. At the outset we decided to write a book that would cover the material in the course.

Contents

Motivation. One-Dimensional Plasticity and Viscoplasticity.- Classical Rate-Independent Plasticity and Viscoplasticity.- Integration Algorithms for Plasticity and Viscoplasticity.- Discrete Variational Formulation and Finite-Element Implementation.- Nonsmooth Multisurface Plasticity and Viscoplasticity.- Numerical Analysis of General Return Mapping Algorithms.- Nonlinear Continuum Mechanics and Phenomenological Plasticity Models.- Objective Integration Algorithms for Rate Formulations of Elastoplasticity.- Phenomenological Plasticity Models Based on the Notion of an Intermediate Stress-Free Configuration.- Viscoelasticity.

最近チェックした商品